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Abstract
As company operations become increasingly digitized, the demand to process data

efficiently and cost-effectively has been ever-growing. More and more companies
are therefore moving their workloads off of dedicated, siloed clusters in favor of
more cost-efficient, shared data infrastructures, e.g., public and private clouds. These
shared data infrastructures are often deployed on highly heterogeneous servers, are
multi-tenant with server resources shared across multiple organizations, and serve
widely diverse workloads ranging from batch analytics jobs to consumer-facing
services with stringent service level objectives (SLOs). Both users and operators of
such shared data infrastructures strive to optimize for value. Users look to complete
their tasks in an efficient and timely manner without having to pay large amounts of
money, while operators seek to satisfy the demands of their customers to increase
adoption and lower turnover, all the while without sacrificing cluster operation costs
and overhead.

This dissertation presents two case studies that allows users to improve value-
attainment when running their workloads in shared data infrastructures in Tributary
and Stratus. Tributary is an elastic control system that embraces the uncertain nature of
transient cloud resources to manage elastic long-running services with latency SLOs
more robustly and more cost-effectively. Stratus is a cluster scheduler specialized for
orchestrating batch job execution on virtual clusters focusing primarily on dollar cost
considerations: since resources in virtual clusters are charged-for while allocated,
Stratus aggressively packs tasks onto machines, guided by job runtime estimates,
such that allocated resources remain highly utilized.

This disseration presents two more case studies that allow cluster operators to
attain value in Wing and Talon. Inter-job dependencies pervade today’s shared data
infrastructures, yet are often invisible to cluster schedulers. The Wing dependency
profiler analyzes job and data provenance logs to find hidden inter-job dependencies,
characterizes them, and provides improved guidance to cluster schedulers and work-
flow managers to help users attain more value. Talon is one such workflow manager
that uses information provided by Wing to load-shift batch analytics jobs to off-peak
hours, thereby allowing cluster operators to save on infrastructure operation costs
through reduced machines managed and usage of lower-cost, transient resources from
the cloud.
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Chapter 1

Introduction

As business operations become increasingly digitized and as data processing tasks become more
and more specialized with the proliferation of various types of data applications, companies are
moving their workloads off of dedicated, siloed clusters in favor of more cost-efficient shared
data infrastructures, e.g., public and private clouds. These shared data infrastructures are often
deployed on highly heterogeneous servers, are multi-tenant with server resources shared across
multiple organizations, and serve widely diverse workloads ranging from batch analytics jobs to
consumer-facing services with stringent service level objectives (SLOs).

Both users and operators of such shared data infrastructures strive to optimize for value.
Operators seek to increase profit margins by lowering infrastructure management costs while
satisfying the demands of their customers (i.e., help users maximize their value) to increase
adoption and lower turnover. At the same time, users look to complete their tasks in an efficient
and timely manner without having to pay large amounts of money.

But, the highly heterogeneous nature of these shared environments imposes a high barrier
to value attainment for both users and cluster operators: Users are offered a wide variety of
different types of compute resources, making it difficult for them to make value-efficient resource
acquisition decisions for their applications, given application constraints. Operators, on the other
hand, face difficult challenges in knowing how to assign compute resources to customers when
heavily loaded. Indeed, maximizing value in shared data infrastructures necessarily requires effort
from both operators and users.

This dissertation explores the problem of value attainment in shared data infrastructures
from both the perspectives of users and cluster operators. On the user front, our work proposes
and evaluates two resource acquisition strategies and systems for renting virtual machine (VM)
instances in the public cloud: (1) Tributary [68] for running online services and (2) Stratus [33],
for general batch analytics jobs. Both demonstrate significant cost savings for users for their
respective application category.

On the operator front, this dissertation explores using the notions of historic inter-job depen-
dencies and expected job value/utility to inform cluster resource managers and workflow managers
about upcoming jobs, their resource requirements, and the potential value they generate to users.
Historically, cluster resource managers and cluster operators are scarcely aware of how jobs are
inter-dependent on one-another. Our series of work in Owl [34], Wing [35], and Talon enable
cluster resource managers and workflow managers to use inter-job dependencies to effectively and
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cost-efficiently allocate cluster resources to jobs to help users attain more value, while helping
cluster operators reduce cluster operation costs.

1.1 Thesis statement
This dissertation describes our work in addressing the challenges of attaining value in shared data
infrastructures. In particular, this dissertation examines our work done to support the following
thesis statement:

Value-realized in shared data environments can be improved both by cost- and heterogeneity-aware
applications from users and by value- and dependency-aware resource management systems from
cluster operators.

To support this thesis, this dissertation will describe four case studies in research software
systems, two of which improve value realized through user applications, and two of which improve
value realized through more effective resource management by exploiting inter-job dependencies.
Realizing value through user applications. This dissertation first describes two case studies that
allow users to realize value through cost savings in running their applications in the public cloud
without significantly impacting their applications’ performance:

(i) Tributary: Spot-dancing for elastic services with latency SLOs (Chapter 3). Aimed
towards the management of elastic cloud services with latency SLOs, the Tributary elastic
control system embraces the uncertain nature of transient cloud resources, e.g., AWS spot
instances, to manage services more robustly and more cost-effectively. Such transient
resources are available at lower cost, but with the proviso that they can be preempted en
masse, making them risky to rely upon for long-running services. Tributary creates models
of preemption likelihood and exploits the partial independence among different resource
offerings, selecting resource allocations that satisfy SLO requirements and adjusting them
over time, as client workloads change. Over a range of web service workloads, we find
that Tributary reduces cost for achieving a given SLO by 81–86% compared to traditional
scaling on non-preemptible resources, and by 47–62% compared to the high-risk approach
of the same scaling with spot resources.

(ii) Stratus: Cost-aware container scheduling in the public cloud (Chapter 4). Aimed
towards general batch analytics jobs, Stratus is a scheduler specialized for orchestrating
job execution on virtual clusters, or dynamically allocated collections of virtual machine
instances on public IaaS platforms. Unlike schedulers for conventional clusters, Stratus
focuses on dollar cost considerations, since public clouds provide effectively unlimited,
highly heterogeneous resources allocated on demand. But, since resources are charged-for
while allocated, Stratus aggressively packs tasks onto machines, guided by job runtime
estimates, trying to make allocated resources be either mostly full (highly utilized) or empty
(so they can be released to save money). Simulation experiments based on cluster workload
traces from Google and TwoSigma show that Stratus reduces cost by 17–44% compared to
state-of-the-art approaches to virtual cluster scheduling.
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Realizing value through dependency-aware resource management. This dissertation describes
two other pieces of research in software systems that demonstrate opportunities for cluster opera-
tors and resource managers to realize value through analyses of historical inter-job dependencies,
using the analysis to effectively prioritize and load-shift jobs in the setting of large, multi-tenant
corporate clusters (Microsoft Cosmos).

(i) Wing: Unearthing inter-job dependencies for better cluster scheduling (Chapter 6). Inter-
job dependencies pervade shared data analytics infrastructures (so-called “data lakes”), as
jobs read output files written by previous jobs, yet are often invisible to current cluster
schedulers. Jobs are submitted one-by-one, without indicating dependencies, and the
scheduler considers them independently based on priority, fairness, etc. This work analyzes
inter-job dependencies in a 50k+ node analytics cluster at Microsoft, based on job and data
provenance logs, finding that nearly 80% of all jobs depend on at least one other job. The
Wing dependency profiler analyzes job and data provenance logs to find hidden inter-job
dependencies, characterizes them, and provides improved guidance to cluster schedulers
or users via Owl, a tool for visualizing Wing output. Specifically, for the 68% of jobs that
exhibit their dependencies in a recurring fashion, Wing predicts the impact of a pending job
on subsequent jobs and user downloads, and uses that information to refine valuation of
that job by the scheduler. In simulations driven by real job logs, we find that a traditional
YARN scheduler that uses Wing-provided valuations in place of user-specified priorities
extracts more value (in terms of successful dependent jobs and user downloads) from a
heavily-loaded cluster.

(ii) Talon: Reducing costs with dependency-informed load-shifting (Chapter 7). In shared
data environments such as public clouds, organizations often reserve long-term, guaranteed
compute resources proportional to their peak workload to ensure enough capacity to com-
plete their jobs on time. However, such reserved capacity is often expensive and requires
long-term commitment. Thus, careful capacity planning is warranted to lower cost.
Talon is a novel workflow management service that lowers long-term reserved resource
commitment by exploiting two components prevalent in shared data environments: (1) inter-
job dependencies derived from historical job and input and output dataflow relations and
(2) intermittently-available transient resources that are often available at lower or no cost
in shared clusters to increase cluster resource utilization, with the proviso that they can be
preempted by cluster resource managers at any time with little warning.
Talon’s analyses of historical job dependencies and other job properties allow it to safely
load-shift jobs off-peak and more reliably schedule jobs on transient resources to reduce
reserved resource commitment without violating job input requirements or job deadlines. In
simulation experiments driven by real job logs from a production cluster at Microsoft, we
find that Talon can effectively reduce reserved resource commitment by up to 38% compared
to the traditional approach of reserving enough resources to handle peak workload, while
incurring only minimal job deadline violations.

1.2 Contributions
This dissertation makes the following key contributions:
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Tributary:
• Describes the first resource acquisition system that takes advantage of preemptible cloud

resources for elastic services with latency SLOs.
• Introduces algorithms for composing resource collections of preemptible resources cost-

effectively, exploiting the partial refund model of EC2’s spot markets.
• Introduces a new preemption prediction approach that our experiments with EC2 spot

market price traces show is significantly more accurate than previous preemption predictors.
• Shows that Tributary’s approach yields significant cost savings and robustness benefits

relative to other state-of-the-art approaches.

Stratus:
• Identifies the unique mix of characteristics that indicate a role for a new job scheduler

specialized for virtual clusters (VCs).
• describes how runtime-conscious packing can be used to minimize under-utilization of

rented instances and techniques for making it work well in practice, including with imperfect
runtime predictions.

• Exposes the inter-dependence of packing decisions and instance type selection, showing the
dollar cost benefits of co-determining them.

• Describes a batch-job scheduler (Stratus) using novel packing and instance acquisition
policies, and demonstrates the effectiveness of its policies with trace-driven simulations of
two large-scale, real-world cluster workloads.

Wing:
• Presents the first detailed public study of hidden inter-job dependencies in a large-scale data

analytics cluster, revealing important problems and opportunities.
• Describes a novel system for extracting historical inter-job dependencies from provenance

data, at scale, and predicting the impact of a newly-submitted job on future jobs and users.
• Shows that use of such predictions can allow a modern scheduler, with minimal changes, to

better serve the overall workload by prioritizing the highest-impact jobs.

Talon:
• Presents the first study of batch analytics job load-shiftability based on real-world job

input dependencies in a large data analytics cluster, presenting significant opportunities for
optimizing batch analytics job scheduling.

• Presents methods to identify jobs that are load-shiftable using inter-job dependencies and
job output access logs.

• Proposes Talon, a novel job workflow manager that exploits job load-shiftability and low-
cost-low-reliability cloud resources to reduce the workload peak on reserved resources.

1.3 Outline
The remainder of this dissertation is organized as follows. We start with describing our work in
realizing value in shared compute environments. Chapter 2 motivates our work in this area with
background on shared compute environments and resource acquisition strategies for batch and
streaming applications. Chapter 3 describes Tributary [68], our elastic control system that robustly
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and cost-effectively acquires resources for latency-sensitive, SLO-aware services. Chapter 4
describes Stratus [33], our specialized scheduler that orchestrates batch analytics job execution in
public clouds by focusing on dollar-cost considerations.

This dissertation then describes our work in realizing value through dependency-aware re-
source management. Chapter 5 motivates our work in this area with background on Cosmos, the
shared cluster in which we conduct our analyses and experiments; GDPR and data provenance,
which provide the backbone for deriving inter-job dependencies; and scheduling strategies for
batch analytics jobs. Chapter 6 characterizes inter-job dependencies as observed in Cosmos
and describes Wing and Owl, our systems for extracting historical inter-job dependencies from
provenance data, and how Wing and Owl can be used to guide cluster schedulers and users to
realize more value. Chapter 7 describes a workflow management system that exploits job load-
shifting with inter-job dependencies in-tandem with intermittently available transient resources to
minimize long-term cluster resource commitment in shared cluster capacity planning. Finally,
Chapter 8 wraps up the dissertation and discusses future research directions.
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Chapter 2

Background: Realizing value through user
applications

The most direct way to realize value for user applications in shared compute environments such
as the public cloud is by cutting the costs to run their applications without sacrificing application
performance. This chapter provides background for our work in realizing value through user
applications by reducing their costs first by describing several compute resources and contracts
offered by many cloud service providers that we exploit with our research systems (§2.1). We
then describe two user applications in elastic, latency-sensitive web services (§2.2) and batch
analytics and their scheduling (§2.3), and how we built research systems to support them in shared
data environments.

2.1 Cloud service provider offerings

IaaS instance types and contracts. Cloud service providers (CSPs) offer an effectively infinite
(from most customers’ viewpoints) set of VM instances available for rental at fine time granularity.
Each CSP offers diverse VM instance “types”, primarily differentiated by their constituent
hardware resources (e.g., core counts and memory sizes), and leasing contract models.

The two primary types of contract model offered by major CSPs [8, 10, 15] are on-demand
and transient. Instances leased under an on-demand contract are non-preemptible. Instances
leased under a transient contract are usually much cheaper, but can beunilaterally revoked by the
CSP at any time. The price of on-demand instances are usually fixed for long periods of time,
whereas the price of transient instances may frequently vary over time.
Transient resources in AWS EC2. In AWS EC2 [10], instances leased under transient contracts
are termed spot instances. Prices of spot instances are dictated by a spot market [11], which
fluctuates over time but typically remains 70–80% below the prices of corresponding on-demand
instances [67]. Fig. 2.1 shows an example of AWS spot market prices over time for the instance
type c4.2xlarge over two availability zones.

There are several properties of the AWS EC2 spot market behavior that affect customer cost
savings and the likelihood of instance preemption. (1) Each instance type in each availability zone
has a unique AWS-controlled spot market associated with it, and AWS’s spot markets are not truly
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Figure 2.1: AWS spot prices over time. Spot prices are shown for the c4.2xlarge (8 VCPUs) instance type
in two availability zones of the US-West-2 region for March 2-9, 2017. The unchanging on-demand price
for c4.2xlarge instance is also shown.

free markets [21]. (2) Price movements among spot markets are not always correlated, even for
the same instance type in a given region [114]. (3) Customers specify a bid in order to acquire
a spot instance. The bid is the maximum price a customer is willing to pay for an instance in a
specific spot market; once a bid is accepted by AWS, it cannot be modified. (4) A customer is
billed the spot market price (not the bid price) for as long as the spot market price for the instance
does not exceed the bid price or until the customer releases it voluntarily. (5) As of Oct 2nd, 2017,
AWS charges for the usage of an EC2 instance up to the second, with one exception: if the spot
market price of an instance exceeds the bid price during its first hour, the customer is refunded
fully for its usage. No refund is given if the spot instance is revoked in any subsequent hour. We
define the period where preemption makes the instance free as the preemption window.

When using EC2 spot instances, the bidding strategy plays an important role in both cost and
preemption probability. Many bidding strategies for EC2 spot instances have been studied [21,
121, 135]. The most popular strategy by far is to bid the on-demand price to minimize the odds of
preemption [95, 114], since AWS charges the market price rather than the bid price.

2.2 Resource acquisition for latency-sensitive SLO services

Elastic web services and SLOs. Elastic web services are a staple application of cloud computing,
as CSPs offer an effectively infinite (from most customers’ viewpoints) set of VM instances
available for rental at fine time granularity, allowing web services to adaptively scale the number
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of web servers used over time to serve client requests based on time-varying client workloads.
Generally, these web services are tied to Service Level Objectives (SLOs), which are commonly
focused on response latency and ensuring that a given percentage (e.g., 95%) of requests are
responded to in under a given amount of time. An elastic control policy seeks to use just the
number of machines required to achieve the web service’s SLOs. We distinguish two aspects of
elastic control, the scaling policy and the resource acquisition scheme.
Scaling policy. The scaling policy determines, at any point in time, how many resources the
service needs in order to satisfy a given SLO. The resource acquisition scheme determines which
resources should be allocated and, in some cases, aspects of how (e.g., bid price or priority level).

Scaling policies have been extensively studied and can be broadly classified as reactive,
predictive, or hybrids thereof [90]. Our work in resource acquisition for elastic web services does
not innovate on the scaling policy front and has been designed to accommodate most existing
scaling policies; as such, we only briefly overview scaling policy options here.

Reactive scaling policies observe system metrics (e.g., CPU utilization and request rate)
periodically and set the target number of resources required based on the resources required
to handle the load in recent observation periods. A reactive scaling policy may violate SLOs
when client load increases faster than the policy determines that more resources are needed and
additional resources are acquired and deployed.

Predictive scaling policies use past observations to infer future demand and set the target
number of resources to meet the predicted demand. A predictive scaling policy may violate
SLOs when its predicted request rate is lower than the actual request rate, and will incur extra
resource-costs when its predicted request rate is higher than the actual request rate.
Resource acquisition scheme. Given a target resource count from a scaling policy, a resource
acquisition scheme decides which resources to acquire based on attributes of resources (e.g.,
bid price or priority level). Many elastic control systems assume that all available resources are
equivalent, such as would be true in a homogeneous cluster, which makes the acquisition scheme
trivial. But, some others address resource selection and bidding strategy aspects of multiple
available options, such as using heuristics to select the lowest-cost resources [1], using integer
linear programming to determine an optimal combination of on-demand resources to use [116],
using market portfolio theory to assess risk of using certain instance types [115], and others.

Our work in Tributary’s AcquireMgr, as to be described in Chapter 3, employs novel resource
acquisition algorithms that considers the cost and failure rate of machines that it can acquire.

2.3 Resource acquisition and scheduling for batch analytics

Traditional job scheduling. Job scheduling for clusters of computers has a rich history, with
innovation still occurring as new systems address larger scale and emerging work patterns.
Generally speaking, job schedulers are the resource assignment decision making component of a
cluster management system that includes support for detecting and monitoring cluster resources,
initiating job execution as assigned, enforcing resource usage limits, and so on.

Users submit jobs consisting of one or more tasks (single computer programs that collectively
make up a job) to the cluster management system, often together with resource requests for each
task (e.g., how much CPU and memory is needed). The job scheduler will decide when and on
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which cluster computer to run each task of the job. Each task is generally executed in some form
of container for resource isolation and security purposes.
Batch analytics jobs and virtual clusters. The nature of batch analytics jobs (e.g., MapRe-
duce [41], Spark [134], and tasks such as machine learning model training) are fundamentally
different from streaming jobs and web services (§2.2). Batch analytics processes run for a finite
amount of time and have looser latency requirements.

Much prior research has been done on batch analytics job schedulers that allocate compute
tasks on to statically-sized, bare-metal clusters, and a wide variety of techniques have been applied
to optimize for various cluster metrics such as resource request latency [101], fairness [53, 72],
and scale [29, 38, 110, 127]. But, relatively little research has been done on cost-effective resource
allocation for batch analytics jobs in the public cloud.

Virtual clusters (VCs), or clusters consisting of allocations of public cloud virtual machine
(VM) instances, can be created to run batch analytics jobs in the cloud. While traditional cluster
schedulers could be used to manage a mostly static allocation VM instances, such an arrangement
would fail to exploit both the public cloud’s elastic on-demand properties, and the public cloud’s
offering of tranient resources (§2.1). Indeed, computational tasks spun off by batch analytics
jobs can often be retried upon failure—this lending more opportunity to take advantage of more
cost-effective, transient resources offered by many CSPs.
Job scheduling in virtual clusters in the public cloud. To fully take advantage of the nature
of public cloud resources, what is needed is a virtual cluster scheduler that packs work onto
instances, as is done by traditional schedulers, without assuming that a fixed pool of resources
is being managed. The concerns for such a scheduler are different than for traditional clusters,
with resource rental costs being added and queueing delay being removed by the ability to
acquire additional resources on demand rather than forcing some jobs to wait for others to finish.
Minimizing cost requires good decisions regarding which tasks to pack together on instances as
well as when to add more instances, which instance types to add, and when to release previously
allocated instances.
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Chapter 3

Tributary: Spot-dancing for elastic services
with latency SLOs

One of the most straightforward ways to increase value realized of user applications run in shared
compute environments is to reduce users’ costs of running their applications without significantly
impacting application performance. This chapter focuses on our work on Tributary [68], an elastic
control system that effectively reduces cost for users running elastic web services in public clouds,
with minimal impact on SLO attainment.

Elastic web services have been a cloud computing staple from the beginning, adaptively
scaling the number of machines used over time based on time-varying client workloads. Generally,
an adaptive scaling policy seeks to use just the number of machines required to achieve its
Service Level Objectives (SLOs), which are commonly focused on response latency and ensuring
that a given percentage (e.g., 95%) of requests are responded to in under a given amount of
time [70, 82]. Too many machines results in unnecessary cost, and too few results in excess
customer dissatisfaction. As such, much research and development has focused on doing this
well [49, 50, 57, 88, 116].

Elastic service scaling schemes generally assume independent and infrequent failures, which
is a relatively safe assumption for high-priority allocations in private clouds and non-preemptible
allocations in public clouds (e.g., on-demand instances in AWS EC2 [10]). This assumption
enables scaling schemes to focus on client workload and server responsiveness variations in
determining changes to the number of machines needed to meet SLOs.

Modern clouds also offer transient, preemptible resources (e.g., EC2 Spot Instances [11])
at a discount of 70–80% [5], creating an opportunity for cheaper service deployments. But,
simply using standard scaling schemes fails to address the risks associated with such resources.
Namely, preemptions should be expected to be more frequent than failures and, more importantly,
preemptions often occur in bulk. Akin to co-occurring failures, bulk preemptions can cause
traditional scaling schemes to have sizable gaps in SLO attainment.

We describe Tributary, a new elastic control system that exploits transient, preemptible
resources to reduce cost and increase robustness to unexpected workload bursts. Tributary
explicitly recognizes the bulk preemption risk, and it exploits the fact that preemptions are often
not highly correlated across different pools of resources in heterogeneous clouds. For example, in
AWS EC2, there is a separate spot market for each instance type in each availability zone, and
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researchers have noted that they often move independently: while preemptions within each spot
market are correlated, across spot markets they are not [67]. To safely use preemptible resources,
Tributary acquires collections of resources drawn from multiple pools, modified as resource prices
change and preemptions occur, while endeavoring to ensure that no single bulk preemption would
cause SLO violation. We refer to this dynamic use of multiple preemptible resource pools as
spot-dancing.

AcquireMgr is Tributary’s component that decides the resource collection’s makeup. It
works with any traditional scaling policy that determines (reactively or predictively) how many
cores or machines are needed for each successive period of time, based on client load variation.
AcquireMgr decides which instances will provide sufficient likelihood of meeting each time
period’s target at the lowest expected cost. Its probabilistic algorithm combines resource cost and
preemption probability predictions for each pool to decide how many resources to include from
each pool, and at what price to bid for any new resources (relative to the current market price).
Given that a preemption occurs when a market’s spot price exceeds the bid price given at resource
acquisition time, AcquireMgr can affect the preemption probability via the delta between its bid
price and the current price, informed by historical pricing trends. In our implementation, which is
specialized to AWS EC2, the predictions use machine learning (ML) models trained on historical
EC2 Spot Price data. The expected cost of the computation takes into account EC2’s policy of
partial refunds for preempted instances, which often results in AcquireMgr choosing high-risk
instances and achieving even bigger savings than just the discount for preemptibility.

In addition to the expected cost savings, Tributary’s spot-dancing provides a burst tolerance
benefit. Any elastic control scheme has some reaction delay between an unexpected burst
and any resulting addition of resources, which can cause SLO violations. Because Tributary’s
resource collection is almost always bigger than the scaling policy’s most recent target in order to
accommodate bulk preemptions, extra resources are often available to handle unexpected bursts.
Of course, traditional elastic control schemes can also acquire extra resources as a buffer against
bursts, but only at a cost, whereas the extra resources when using Tributary are a bonus side-effect
of AcquireMgr’s robust cost savings scheme.

Results for four real-world web request arrival traces and real AWS EC2 spot market data
demonstrate Tributary’s cost savings and SLO benefits. For each of three popular scaling policies
(one reactive and two predictive), Tributary’s exploitation of AWS spot instances reduces cost by
81–86% compared to traditional scaling with on-demand instances for achieving a given SLO
(e.g., 95% of requests below 1 second). Compared to unsafely using traditional scaling with
spot instances (AWS AutoScale [1]) instead of on-demand instances, Tributary reduces cost by
47–62% for achieving a given SLO. Compared to other recent systems’ policies for exploiting
spot instances to reduce cost [67, 115], Tributary provides higher SLO attainment at significantly
lower cost.

Our study on Tributary makes four primary contributions. First, it describes Tributary,
the first resource acquisition system that takes advantage of preemptible cloud resources for
elastic services with latency SLOs. Second, it introduces AcquireMgr algorithms for composing
resource collections of preemptible resources cost-effectively, exploiting the partial refund model
of EC2’s spot markets. Third, it introduces a new preemption prediction approach that our
experiments with EC2 spot market price traces show is significantly more accurate than previous
preemption predictors. Fourth, we show that Tributary’s approach yields significant cost savings
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and robustness benefits relative to other state-of-the-art approaches.

3.1 Elastic Control in Tributary

AcquireMgr is Tributary’s resource acquisition component, and its approach differentiates Trib-
utary from previous elastic control systems. It is coupled with a scaling policy, any of many
popular options, which provides the time-varying resource quantity target based on client load.
AcquireMgr uses ML models to predict the preemption probability of resources and exploits
the relative independence of AWS spot markets to account for potential bulk preemptions by
acquiring a diverse mix of preemptible resources collectively expected to satisfy the user-specified
latency SLO. This section describes how AcquireMgr composes the resource mix while targeting
minimal cost.
Resource Acquisition. AcquireMgr interacts with AWS to request and acquire resources. To do
so, AcquireMgr builds sets of request vectors. Each request vector specifies the instance type,
availability zone, bid price, and number of instances to acquire. We call this an allocation request.
An allocation is defined as a set of instances of the same type acquired at the same time and price.
AcquireMgr’s total footprint, denoted with the variable A, is a set of such allocations. Resource
acquisition decisions are made under four conditions: (1) a periodic (one-minute) clock event
fires, (2) an allocation reaches the end of its preemption window, (3) the scaling policy specifies
a change in resource requirement, and/or (4) a preemption occurs. We term these conditions
decision points.

AcquireMgr abstracts away the resource type which is being optimized for. For the workloads
described in this chapter, virtual CPUs (VCPUs) are the bottleneck resource; however, it is
possible to optimize for memory, network bandwidth, or other resource types instead. A service
using Tributary provides its resource scaling characteristics to AcquireMgr in the form of a utility
function υ(). This utility function maps the number of resources to the percentage of requests
expected to meet the target latency, given the load on the web service. The shape of a utility
function is service-specific and depends on how the service scales, for the expected load, with
respect to the number of resources. In the simplest case where the web service is embarrassingly
parallel, the utility function is linear with respect to the number of resources offered until 100% of
the requests are expected to be satisfied, at which point the function turns into a horizontal line. As
a concrete example, if an embarrassingly parallel service specifies that 100 instances are required
to handle 10000 requests per second without any of the requests missing the target latency, a linear
utility function will assume that 50 instances will allow the system to meet the target latency
on 50% of the requests. Tributary allows applications to customize the utility function so as to
accommodate the resource requirements of applications with various scaling characteristics.

In addition to providing υ(), the service also provides the application’s target SLO in terms
of a percentage of requests required to meet the target latency. By exposing the target SLO as
a customizable input, Tributary allows the application to control the Cost-SLO tradeoff. Upon
receiving this information, AcquireMgr acquires enough resources to meet SLO in expectation
while optimizing for expected cost. In deciding which resources to acquire, AcquireMgr uses
the prediction models described in §3.1.1 to predict the probability that each allocation would be
preempted. Using these predictions, AcquireMgr can compute the expected cost and the expected
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utility of a set of allocations (§3.1.2). AcquireMgr greedily acquires allocations until the expected
utility is greater than or equal to the SLO percentage requirement (§3.1.3).

3.1.1 Prediction Models
When acquiring spot instances on AWS, there are three configurable parameters that affect
preemption probability: instance type, availability zone and bid price. This section describes the
models used by AcquireMgr to predict allocation preemption probabilities.

Previous work [67] proposed taking the historical median probability of preemption based
on the instance type, availability zone and bid price. This approach does not consider time of
day, day of week, price fluctuations and several other factors that affect preemption probabilities.
AcquireMgr trains ML models considering such features to predict resource reliability.
Training Data and Feature Engineering. The prediction models are trained ahead of time with
data derived from AWS spot market price histories. Each sample in the training dataset is a
hypothetical bid, and the target variable, preempted, of our model is whether or not an instance
acquired with the hypothetical bid is preempted before the end of its preemption window (1 hr).
We use the following method to generate our data set: For each instance and bid delta (bid price
above the market price with range [0.00001, 0.2]) we generate a set of hypothetical bids with the
bid starting at a random point in the spot market history. For each bid, we look forward in the
spot market price history. If the market price of the instance rises above the bid price at any point
within the hour, we mark the sample as preempted. For each historical bid, we also record the
ten prices immediately prior to the random starting point and their time-stamps.

To increase prediction accuracy, AcquireMgr engineers features from AWS spot market price
histories. Our engineered features include: (1) Spot market price; (2) Average spot market price;
(3) Bid delta; (4) Frequency of spot market price changing within past hour; (5) Magnitude of spot
market price fluctuations within past two, ten, and thirty minutes; (6) Day of the week; (7) Time
of day; (8) Whether the time of day falls within working hours (separate feature for all three time
zones). These features allow AcquireMgr to construct a more complex prediction model, leading
to a higher prediction accuracy (§3.3.8).
Model Design. To capture the temporal nature of the EC2 spot market, AcquireMgr uses a Long
Short-Term Memory Recurrent Neural Network (LSTM RNN) to predict instance preemptions.
The LSTM RNN is a popular model for workloads where the ordering of training examples is
important to prediction accuracy [120]. Examples of such workloads include language modeling,
machine translation, and stock market prediction. Unlike feed forward neural networks, LSTM
models take previous inputs into account when classifying input data. Modeling the EC2 spot
market as a sequence of events significantly improves prediction accuracy (§3.3.8). The output of
the model is the probability of the resource being preempted within the hour.

3.1.2 AcquireMgr
To make decisions about which resources to acquire or release, AcquireMgr computes the expected
cost and expected utility of the set of instances it is considering at each decision point. Calculations
of the expected values are based on probabilities of preemption computed by AcquireMgr’s trained
LSTM model. This section describes how AcquireMgr computes these values.
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A Set of allocations as jagged array
Ai Sorted array of allocations from resource pool i
ai,j Set of instances allocated from resource pool i
βi,j Probability that allocation ai,j is preempted
ti,j Time left in the preemption window for ai,j
ki,j Number of instances in allocation ai,j
Pi,j Market price of allocation ai,j
pi,j Bid price of allocation ai,j
size(y) Size of the major dimension of array y

resc(y) Counts the total number of resources in y

λi Regularization term for diversity
P (R = r) Probability that r resources remain in A

υ(r) The utility of having r resources remain in A

VA The expected utility of a set of allocations A
CA Expected cost of a set of allocations ($)

Table 3.1: Summary of parameters used by AcquireMgr
.

Definitions. To aid in discussion, we first define the notion of a resource pool. Each instance type
in each availability zone forms its own resource pool—in the context of the EC2 spot instances,
each such resource pool has its own spot market. Given a set of allocations A, where A is
formulated as a jagged array, let Ai be defined as the ith entry of A corresponding to an array of
allocations from resource pool i sorted by bid price in ascending order. We define allocation ai,j
as an allocation from resource pool i (i.e., ai,j ∈ Ai) with the jth lowest bid in that resource pool.
We further denote pi,j as the bid price of allocation ai,j , βi,j as the probability of preemption of
allocation ai,j , and ti,j as the time remaining in the preemption window for allocation ai,j . Note
that pi,j ≥ pi,j−1, which also implies βi,j−1 ≥ βi,j . Finally, we define a size(A) function that
returns the size of A’s major dimension. See Table 3.1 for symbol reference.
Expected Cost. The total expected cost for a given footprint A is calculated as the sum over the
expected cost of individual allocations CA [ai,j]:

CA =

size(A)∑
i=1

size(Ai)∑
j=1

CA[ai,j] (3.1)

AcquireMgr calculates the expected cost of an allocation by considering the probability of
preemption within the preemption window βi,j for a given allocation ai,j at a given bid delta.
There are exactly two possibilities: an allocation will either be preempted with probability βi,j

or it will reach the end of its preemption window in the remaining ti,j minutes with probability
1− βi,j , in which case we would voluntarily release the allocation. The expected cost can then be
written down as:

CA[ai,j] = (1− βi,j) ∗ Pi,j ∗ ki,j ∗ ti,j + βi,j ∗ 0 ∗ ki,j ∗ ti,j (3.2)

where ki,j is the number of instances in the allocation. and Pi,j is the market price for instance of
type i at the time of acquisition.
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Expected Utility. In addition to computing expected cost for a set of allocations, AcquireMgr
computes the expected utility for a set of allocations. The expected utility is the expected percentage
of requests that will meet the latency target given the set of allocations A. Expected utility takes
into account the probability of allocation preemptions, providing AcquireMgr with a metric for
quantifying the expected contribution that each allocation should make to meet the resource target.
The expected utility VA of the set of allocations A is calculated as follows:

VA =

resc(A)∑
r=0

P (R = r) ∗ υ(r) (3.3)

where P (R) is the probability mass function of the discrete random variable R that denotes the
number of resources not preempted within the next hour, υ is the utility function provided by the
service, and resc(A) is the function that reports the number of resources in a set of allocations A.
resc(A) computes the total amount of resources in A, while size(A) only computes the size of
A’s major dimension.

Eq. 3.3 computes the expected utility over the next hour given a workload, as though Tributary
just bid for all its allocations. This works, even though there will usually be complex overlapping
expiration windows across an hour, because it only needs to hold true until recomputed at the next
decision point, which is never more than a minute away. To derive P (R), AcquireMgr starts off
with the original set of allocations A and generates all possible subsets of A. Each possible subset
S ⊆ A, S marks some allocations in A as preempted (∈ S) and the remaining allocations as not
preempted (̸∈ S). To formalize the notion, we define the indicator variable di,j , where di,j = 1 if
allocation ai,j ∈ S and di,j = 0 otherwise.

To compute the probability of S being the set of preempted resources (P (S)), AcquireMgr
separates all allocations by resource pools, as each resource pool within AWS has its own spot
market. We leverage the following localizing property. Within each resource pool Ai, the
probability of preempting an allocation ai,j is only dependent on whether the allocation with the
next lowest bid price, ai,j−1, in the same resource pool is preempted. Note that P (ai,1) = βi,1 for
allocation ai,1 for all resource pools i. Consider two allocations ai,j, ai,j−1 ∈ A from resource pool
Ai. We observe the following properties: (1) ai,j cannot be preempted unless ai,j−1 is preempted,
(2) the probability that both ai,j and ai,j−1 are preempted is the probability that ai,j is preempted,
and (3) the probability that ai,j is preempted without ai,j−1 being preempted is 0. With Bayes’
Rule, we observe that:

P (ai,j|ai,j−1) =
P (ai,j ∧ ai,j−1)

P (ai,j−1)
=

βi,j

βi,j−1

. (3.4)

Thus, for an allocation ai,j given subset S ⊆ A,

P (ai,j |ai,j−1) =

{
0 if allocation ai,j−1 ̸∈ S,

βi,j/βi,j−1 else.
(3.5)

Tributary further introduces a regularization term λi to encourage bidding in markets with low
correlation. Having instances spread across lowly correlated markets is important for avoiding
high-risk footprints. If the resource footprint has too many instances from correlated resource
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pools, Tributary becomes exposed to having too many resources being lost to a correlated price
spike, potentially causing an SLO violation. In order obtain price correlation across spot markets,
we periodically keep track of fix-sized moving windows of spot markets and compute the Pearson
correlation between each pair of spot markets. When computing expected utility, Tributary
increases an allocation in Ai’s probability of preemption βi,j by λi:

λi = γ ∗
size(A)∑
l=1

ρi,l ∗
resc(Ai) + resc(Al)

2 ∗ resc(A) (3.6)

where ρi,l is the Pearson correlation between resource pools i and l, and γ ∈ R ≥ 0 is the
configurable penalty multiplier. Essentially, we add a weighted penalty to an allocation based
on its Pearson correlation scores with the rest of our resources in different resource pools.
In our experiments, we set γ = 0.01. The regularization term leads to Tributary creating a
diversified resource pool, thus reducing the probability that a significant portion of the resources
are preempted simultaneously. Having a high probability of maintaining the majority of the
resource pool at any point time, allows Tributary to avoid SLO violations with a high probability.

Let’s denote P (S) as the probability of S being the set of resources preempted from A.
AcquireMgr computes it by taking the product of the conditional probability of each allocation
having the outcome specified in S. If the allocation is preempted (di,j = 1) the conditional
probability of the allocation being preempted (P (ai,j|ai,j−1)) is used, otherwise (di,j = 0) the
product uses the conditional probability of the allocation not being preempted (1−P (ai,j|ai,j−1)).

P (S) =

size(A)∏
i=1

size(Ai)∏
j=1

(
di,j ∗ P (ai,j|ai,j−1)

+(1− di,j) ∗ (1− P (ai,j|ai,j−1))
) (3.7)

Finally, AcquireMgr formulates the probability of r resources remaining after preemption
P (R = r) (Eq. 3.3) as the sum of the probabilities of all sets S where the number of resources
not preempted in S equals to r:

P (R = r) =
∑

S⊆A,resc(S)=resc(A)−r

P (S) (3.8)

which it uses to calculate the expected utility of a set of allocations A (Eq. 3.3).
Computational tractability. AcquireMgr’s algorithm is exponentially computationally expensive
as the number of spot markets considered increases. When considering more markets, it is possible
to reduce computational complexity by grouping similar, correlated spot markets, and performing
revocation analysis with a representative market. Although this would potentially decrease the
precision of the preemption analysis, it would allow AcquireMgr to further improve performance
by considering a larger number of markets.

3.1.3 Scaling Out
Resource Acquisition. When Tributary starts, the user specifies a target SLO in terms of percent-
age of requests that respond within a certain latency for Tributary to target. AcquireMgr uses this
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Figure 3.1: Figures (b) and (c) show how Tributary and AutoScale handle a sample workload respectively.
Figure (a) is the legend for (b) and (c), color-coding each allocation. The black dotted lines in (b)
and (c) signify the request rates over time. At minute 15, the request rate unexpectedly spikes and
AutoScale experiences “slow” requests until completing integration of additional resources with 3. Tributary,
meanwhile, had extra resources meant to address preemption risk in C, providing a natural buffer of
resources that is able to avoid “slow” requests during the spike. At minute 35, when the request rate
decreases, Tributary terminates B, since it believes that B has the lowest probability of getting the free
partial hour. It does not terminate D since it has a high probability of eviction and is likely to be free; it
also does not terminate C since it needs to maintain resources. AutoScale, on the other hand, terminates
both 2 and 3, incurring partial cost. At minute 52, the request rate increases and Tributary again benefits
from the extra buffer while AutoScale misses its latency SLO. In this example, Tributary has less “slow”
requests and achieves lower cost than AutoScale because AutoScale pays for 3 and for the partial hour for
both 1 and 2 while Tributary only pays for A and the partial hour for B since C and D were preempted and
incur no cost.
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target SLO to acquire resources. At each decision point, AcquireMgr’s objective is to acquire
resources until the expected utility θA is greater than or equal to the target SLO. If the expected
utility is greater than or equal to the target SLO, no action is taken; otherwise, AcquireMgr
computes the expected cost (Eq. 3.2) and utility of the current set of allocations (Eq. 3.3). Ac-
quireMgr then calculates the missing number of resources (M ) required to meet the target SLO
and builds a set of possible allocations (Λ) that consists of allocations from different resource
pools at different bid prices (from $0.0001 to $0.2 above the current price). For each possible
allocation Λi, AcquireMgr records the new expected utility divided by the new expected cost of
A ∪ Λi, choosing the allocation Λchosen that maximizes this value. AcquireMgr continues to add
possible allocations until it achieves the target SLO in expectation.
Buffers of Transient Resources. To accommodate potential resource preemptions, Tributary
inherently acquires more than the required amount of resources if any of its allocations have
a preemption probability greater than zero, which is always the case with spot instances. The
amount of additional resources acquired depends on the target SLO and the probabilities of
allocation preemptions (Eq. 3.3). While the primary goal of these additional resources is to
account for preemptions, they often have the added benefit handling unexpected increases in load.
Experiments with Tributary show that these resource buffers both increase the fraction of requests
meeting latency targets and decrease cost (§3.3.4).

3.1.4 Scaling In

Aside from preemptions, Tributary also tries to scale in voluntarily. As described earlier, each
allocation is considered only for the duration of the preemption window. When an allocation
reaches the end of its preemption window, it is terminated and replaced with a new allocation if
required. When resource requirements decrease, Tributary considers terminating allocations for
allocations least likely to be preempted. During this process Tributary chooses the allocation with
the least time remaining in the hour, computes the expected utility θA without this allocation, and
if it is greater than the target SLO, Tributary terminates the allocation. Tributary continues to try
and terminate allocations as long as θA remains greater than the target SLO.

3.1.5 Example and Future Consideration

Example. Fig. 3.1 shows how Tributary and AutoScale handle a sample workload, including how
the extra resources Tributary acquires to handle preemption events can also handle an unexpected
request rate increase and how aggressive allocation selection can get some resources for free due
to preemptions.
Future. Tributary lowers cost and meets SLO requirements by taking advantage of low-cost spot
instances and uncorrelated prices across different spot instance markets. Mass adoption of systems
like Tributary could change these characteristics. While a detailed analysis of mass adoption’s
potential effects on EC2 spot-markets is outside the scope of this chapter, we evaluate the effects
of two potential changes to the spot-market policies in §3.3.6.
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3.2 Tributary Implementation
Fig. 3.2 shows Tributary’s high-level system architecture. This section describes the main compo-
nents, how they fit together, and how they interact with AWS.
Preemption Prediction Models. The prediction models are trained offline using TensorFlow [20]
and deployed using Tensorflow Serving [17]. A separate model is used for each resource pool.
To service run time predictions Tributary launches a Prediction Serving Proxy that receives all
prediction queries from AcquireMgr, forwards them to their respective models, aggregates the
results, and returns the predictions to AcquireMgr.
Resource Footprint Management. In Tributary, AcquireMgr takes primary responsibility for
managing the resource footprint. AcquireMgr acquires instances, terminates instances, and
monitors AWS for instance preemption notifications. AcquireMgr considers modifying the
resource footprint at every decision point, and it follows the procedure described in §3.1.3 when
additional resources are needed. Once AcquireMgr selects a set of instances to acquire, it sends
instance requests to AWS via boto.ec2 API calls. AWS responds with a set of spot request ids,
which corresponds to the EC2 instances allocated to AcquireMgr. Once the instances are in a
running state, AcquireMgr sends the instance ids associated with the new instances to Resource
Manager. Instance removal follows a similar procedure.
Scaling Policy. The Scaling Policy component determines dynamic sizing of the resource target.
Through a simple event-driven API, users can implement their own scaling policies that access
metrics provided by the Monitoring Manager and specify the resource target.
Monitoring Manager (MonMgr). The Monitoring Manager orchestrates monitoring of service
system resources. The Scaling Policy can register for metrics such as total number of requests
and average CPU utilization of instances. The MonMgr queries requested metrics using AWS
CloudWatch each monitoring period and forwards them to the scaling policy.
Resource Manager (ResMgr). The Resource Manager is a proxy for AcquireMgr. Using
resource targets provided by the Scaling Policy, the ResMgr generates the utility function used
by AcquireMgr to make resource acquisition decisions.1 The ResMgr also receives instance
allocations and termination notices from AcquireMgr and forwards them to the Service Manager.

3.3 Evaluation
This section evaluates Tributary’s effectiveness. The results support a number of important
findings: (1) Tributary’s exploitation of AWS spot market instances reduces cost by 81%–86%
compared to on-demand instances and simultaneously decrease SLO latency misses; (2) Compared
to standard bidding policies for spot instances, Tributary reduces cost by up to 41% and decreases
SLO latency misses by 31%–65%; (3) Compared to extending those standard policies to use
enough extra (buffer) resources to match Tributary’s number of SLO latency misses, Tributary
reduces cost by 47%–62%; (4) Tributary outperforms state-of-the-art resource managers in running
elastic services; (5) Tributary’s preemption prediction models improve accuracy significantly,
resulting in 37% lower cost than previous prediction approaches.

1Process of constructing the utility function is described in §3.3.2.
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Figure 3.2: Tributary architecture.

3.3.1 Experimental Setup
Experimental Platform. We report results for use of three AWS EC2 spot instance types: c4.large,
c4.xlarge, and c4.2xlarge. The results correspond to the us-west-2 region, which consists of three
availability zones. Using the three instance types in each availability zone, our experiments
involve nine resource pools.
Workload. The simulated workload uses a real-world trace for request arrival times, with each
request consisting of the derivation of the PBKDF2 [79] key of a password. The calculation of
a PBKDF2 key is CPU-heavy, with no network overhead and minimal memory overhead. With
the CPU performance being the bottleneck, the resource requirement can be characterized in
requests-per-second-per-VCPU.
Environment. In the simulation framework, each instance is characterized with a number of
VCPUs, and the request processing time is configured to the measured time for one request on an
EC2 instance (≈100ms). Each instance server maintains a queue of requests, and we simulate
the queueing effects using the discrete event simulation library SimPy [99]. The simulation
framework takes into account resource start-up time, with newly acquired instances not able to
service requests for two hundred seconds following their launch.
SLO and Scaling. The target service latency is set to one second, and we verified on EC2 that a
VCPU can handle roughly 10 requests per second without violating the latency target. So, the
requests-per-second-per-VCPU is ten, and the queue size per server instance is ten times the
number of VCPUs in the instance. Tributary is not overly sensitive to the target latency setting.
Traces. We use four real-world request arrival traces with differing characteristics. Berkeley
is from the Berkeley Home IP proxy service and ClarkNet is from the ClarkNet ISP’s HTTP
servers [40]. Both exhibit a periodic, diurnal pattern. We use the first 2000 minutes of these two
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Figure 3.3: Traces used in system evaluation.

traces, which covers an entire period. WITS is a sampled trace from the Waikato Internet Traffic
Storage (WITS) [61]. The trace lasts for roughly a day, from April 6th to April 7th of the year 2000.
This trace exhibits large variation of request rates throughout the day, as can be seen in Fig. 3.3b.
WorldCup98 is the arrival trace of the workload on the 1998 FIFA World Cup HTTP Servers [40]
on day 75 of the World Cup. All traces are scaled to have an average of 125 requests per second
in order to generate sufficient load for the experiments.

3.3.2 Scaling Policies Evaluated

We implement three popular scaling policies: Reactive, Predictive Moving Window Average
(MWA), and Predictive Linear Regression (LR) to evaluate our system. The utility function
provided by the service is linear for all three policies. We make this assumption since our workload
characteristic is embarrassingly parallel—if a workload exhibits different scaling characteristics,
a different utility function can be employed.

The Reactive Policy scales out immediately when demand reported by the MonMgr is greater
than what the available resources are able to handle. It scales in slowly (only after three minutes
of low demand), as recommended by Gandhi et al. [50], to prevent premature scale-in in case the
demand fluctuates widely in a short period of time. The MWA Policy maintains a sliding window
of a fixed size, with each window entry consisting of the number of requests received in each
monitoring period. The policy takes the average of the window entries to predict the number of
requests on the next monitoring period. The policy then adjusts the utility and scaling functions
according to the predicted number of requests, and reports the updated functions to the ResMgr to
scale in expectation of future requests. The LR Policy also maintains a sliding window of a fixed
size, but rather than using the average in the window for prediction, the policy performs linear
regression on data points in the window to estimate the expected number of requests in the next
monitoring period. Our experiments show that regardless of the scaling policy used, Tributary
beats its competitors in both meeting the service latency target and cost.
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Figure 3.4: Cost savings (red) and percentage of “slow” requests (blue) for the ClarkNet trace.

3.3.3 Compared cloud resource acquisition schemes and related work

Given a target resource count from a scaling policy, a resource acquisition scheme decides which
resources to acquire based on attributes of resources (e.g., bid price or priority level). We discuss
related work in resource acquisition schemes here, a few of which we implement and compare
Tributary against (§3.3.7).

AWS AutoScale [1] is a service provided by AWS that maintains the resource footprint
according to the target determined by a scaling policy. At initialization time, if using on-demand
instances, the user specifies an instance type and availability zone. Whenever the scaling target
changes, AutoScale acquires or releases instances to reach the new target. If using spot instances,
the user can use a so-called “spot fleet” [16] consisting of multiple instance type and availability
zone options. In this case, the user configures AutoScale to use one of two strategies. The
lowestPrice strategy will always select cheapest current spot price of the specified options. The
diversified strategy will use an equal number of instances from each option. Tributary bids
aggressively and diversifies based on predicted preemption rates and observed inter-market
correlation, resulting in both higher SLO attainment and lower cost than AutoScale.

Kingfisher [116] uses a cost-aware resource acquisition scheme based on using integer linear
programming to determine a service’s resource footprint among a heterogeneous set of non-
preemptible instances with fixed prices. Tributary also selects from among heterogeneous options,
but addresses the additional challenges and opportunities introduced by embracing preemptible
transient resources. Several works have explored ways of selecting and using spot instances.
HotSpot [117] is a resource container that allows an application to suspend and automatically
migrate to the most cost-efficient spot instance. While HotSpot works for single-instance applica-
tions, it is not suitable for elastic services since its migrations are not coordinated and it does not
address bulk preemptions.

SpotCheck [113] proposes two methods of selecting spot markets to acquire instances in
while always bidding at a configurable multiple of the spot instance’s corresponding on-demand
price. The first method is greedy cheapest-first, which picks the cheapest spot market. The
second method is stability-first, which chooses the most price-stable market based on past market
price movement. SpotCheck relies on VM migration and hot spares (on-demand or otherwise)
to address revocations, which incurs additional cost, while Tributary uses a diverse pool of spot
instances to mitigate revocation risk.

BOSS [131] hosts key-value stores on spot instances by exploiting price differences across
pools in different data-centers and creating an online algorithm to dynamically size pools within a
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constant bound of optimality. Tributary also constructs its resource footprint from different pools,
within and possibly across data-centers. Whereas BOSS assumes non-changing storage capacity
requirements, Tributary dynamically scales its resource footprint to maintain the specified latency
SLO while adapting to changes in client workload.

Wang et al. [129] explore strategies to decide whether, in the face of changing application
behavior, it is better to reserve discounted resources over longer periods or lease resources at
normal rates on a shorter term basis. Their solution combines on-demand and “reserved” (long
term rental at discount price) instances, neither of which are ever preempted by Amazon.

ExoSphere [115] is a virtual cluster framework for spot instances. Its instance acquisition
scheme is based on market portfolio theory, relying on a specified risk averseness parameter (α).
ExoSphere formulates the return of a spot instance acquisition as the difference between the
on-demand cost and the expected cost based on past spot market prices. It then tries to maximize
the return of a set of instance allocations with respect to risk, considering market correlations and
α, determining the fraction of desired resources to allocate in each spot market being considered.
For a given virtual cluster size, ExoSphere will acquire the corresponding number of instances
from each market at the on-demand price. Unsurprisingly, since it was created for a different
usage model, ExoSphere’s scheme is not a great fit for elastic services with latency SLOs. We
implement ExoSphere’s scheme and show in §3.3.7 that Tributary achieves lower cost, because
it bids aggressively (resulting in more preemptions), and higher SLO attainment, because it
explicitly predicts preemptions and selects resource sets based on sufficient tolerance of bulk
preemptions.

3.3.4 Improvements with Tributary

Here, we evaluate Tributary’s ability to reduce cost and latency target misses against AutoScale.
AWS Autoscale. AWS AutoScale (§3.3.3) as offered by Amazon only supports the simplest reac-
tive scaling policies. To provide better comparison between approaches, we implement the AWS
AutoScale resource acquisition algorithm as closely as possible according to its documentation [1]
and integrate it with Tributary’s SvcMgr to work with its more powerful scaling policies. From
here on, mentions of AutoScale refer to our implementation of AWS AutoScale. AutoScale is the
equivalent of the AcquireMgr component of Tributary. The default AutoScale algorithm with spot
instances bids for the lowest market-priced spot instance at the on-demand price upon resource
requests by the scaling policy. In addition, AutoScale terminates resources as soon as the resource
requirements are lowered, choosing to terminate resources that are most expensive at the moment.
Methodology and Terminology. To achieve fair comparisons across a wide range of data points,
we perform cost analysis with simulations using historical spot market traces. Using traces allows
us to test different approaches on the same period of market data and to get a better picture of the
expected behavior of the system in a shorter amount of time. For each request arrival trace (§3.3.1)
and resource acquisition approach, we present the average cost and percentage of “slow” requests
over trace requests across ten randomly chosen day/time starting points between January 23,
2017 and March 23, 2017 in the us-west-2 region. From here on, we define a “slow” request
as a request that does not meet the latency target and the percentage of “slow” requests as the
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percentage of “slow” requests over all requests in a single trace.2

Cost Savings and Service Latency Improvements. Fig. 3.4 shows the cost savings and percent-
age of “slow” requests for the ClarkNet trace. The cost savings are normalized against running
Tributary on on-demand resources. The results demonstrate that Tributary reduces cost and “slow”
requests for all three scaling policies. Cost savings are ≈ 85% compared to on-demand resources.
For the ClarkNet trace, Tributary reduces cost by 36%, 24% and 21% compared to to AutoScale
for the Reactive, Predictive-LR and Predictive-MWA scaling policies, respectively. Compared to
AutoScale, Tributary reduces “slow” requests by 72%, 61% and 64%, respectively, for the three
scaling policies.

In order to decrease the number “slow” requests, popular scaling polices are often configured
to provision more resources than immediately necessary to handle unexpected increases in load.
It is common to specify the resource buffer as a percentage of the expected resource requirement.
For example, with a buffer of 50%, 15 resources (e.g., VCPUs) would be acquired rather than the
projected 10. AutoScale+Buffer shows the cost of provisioning AutoScale with a large enough
buffer such that its number of “slow” requests matches that of Tributary. Tributary reduces cost
by 61%, 56% and 57% compared to AutoScale+Buffer for the three scaling policies.

The cost savings for Tributary on the Berkeley trace relative to AutoScale are similar to
those on the ClarkNet trace, but the reduction in percentage of “slow” requests increases. This
difference in performance is due to differing characteristics of the two traces—the ClarkNet
trace experiences more minute-to-minute volatility in request rate compared to the Berkeley trace.
We observe similar levels of cost reductions and reduction in “slow” requests on the WITS and
WorldCup98 traces, results for WITS are shown in Tables 3.2. Compared to AutoScale+Buffer,
Tributary decreased costs by 47–62% across all traces.

Scaling Policy Cost Saving “Slow” request Reduction
Reactive 37% 31%
Predictive-LR 33% 50%
Predictive-MWA 29% 51%

Table 3.2: Cost and “slow” request improvements for Tributary compared to AutoScale for the WITS trace

Attribution of Benefits. Tributary’s superior performance arises from several factors. Much of
the reduction in cost compared to AutoScale is due to Tributary’s ability to get free instance hours.
Free instance hours occur when an allocation does useful work but is preempted by AWS before
the end of a preemption window. The user receives a refund for the partial hour, which means that
any work done by the allocation in the preemption window comes at no cost to the user. Tributary
takes the probability of getting free instance hours into account when computing the expected
cost of allocations (Eq. 3.1), often acquiring resources that provide higher opportunities for free
instance hours.

Another factor in Tributary’s lower cost is its ability to remove allocations that are not likely
to be preempted when demand drops. When resource demand decreases, Tributary terminates
instances that are least likely to be preempted, thus lowering the expected cost of its resource

2Prediction models were trained on data from 06/06/16 – 01/22/17.
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Figure 3.5: Comparing to ExoSphere and Proteus. Predictive-MWA results not shown but similar.

footprint. The reductions in “slow” requests arise from the buffer of resources acquired by Tribu-
tary (§3.1.3). When acquiring instances, AcquireMgr estimates their probability of preemption.
Unless all allocations have a preemption probability of zero, which never occurs for spot instances,
Tributary acquires more resources than specified by the scaling policy. The primary goal of the
additional resources is to ensure that, when Tributary experiences preemption events, it still has at
least the specified number of resources in expectation. The additional resources also provide a
secondary benefit by handling some or all of unexpected bursts of requests that exceed the load
expected by the scaling policy. The cost of these additional resources is commonly offset by free
instance hours; indeed, the extra resources are acquired to cope with preemptions.

3.3.5 Risk Mitigation
A key feature of Tributary is that it encourages instance diversification, i.e., acquiring instances
from mostly independent resource pools (§3.1.2). The default AutoScale policy is the lowest-
price policy, which does not take diversification into account when acquiring instances; instead,
it acquires the cheapest instance. Illustrated in Fig. 3.1, Tributary acquires different types of
instances in different availability zones, while AutoScale acquires instances of the same type
(all red). Diversifying across resource pools is important, because each has an independent
spot market, avoiding highly correlated allocation preemptions within a single instance market.
Acquiring too much from a single pool, as often occurs with AutoScale, creates a high risk of SLO
violation when preemption events occur (e.g., if the red allocation in Fig. 3.1c was preempted
prior to minute 35).

In our experiments, we found it to be very rare for market prices to rise above on-demand
prices, meaning that AutoScale rarely experiences preemption events. However, when examining
past EC2 spot market traces and other availability zones, we found it to be significantly more
common for the market price to rise above the on-demand price, thus preempting AutoScale
instances.3 Since Amazon charges users the market price and not the bid price, it is possible
that Amazon may once again preempt instances bidding the on-demand price with regularity—a
phenomenon we recently observed in the us-east availability zones. Thus, AutoScale’s resource
acquisition approach is riskier for services with latency SLOs on spot machines.
Cost of Diversified AutoScale. In addition to the default AutoScale policy which acquires the
lowest-priced instance, AWS also offers a diversified AutoScale policy that starts instances from
a diverse set of resource pools [16]. Acquiring instances from different spot markets reduces

3From 01/23/17–03/20/17, the market price rose above the on-demand price 0 times for the c4.2xlarge instance
type in us-west-2. From 11/1/16–01/22/17, it happened 1073 times.
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preemption risks, but our experiments showed that it increases cost by 8%–12% compared to
the lowest-price AutoScale policy. Compared to Tributary, which diversifies across spot markets
intelligently, we found that a diversified AutoScale policy cost 68% more to achieve the same
number of “slow” requests for the reactive scaling policy on the ClarkNet trace.

3.3.6 Pricing Model Discussion

Our experimental results are based on current AWS EC2 billing policies, as described §2.1. This
section discusses how Tributary would function under two potential changes to the billing model:
(1) elimination of preemption refunds, (2) institution of a free market.
Elimination of preemption refunds. If Amazon eliminates refunds when the market price
exceeds bid price during the first hours of usage, Tributary would lose incentive to bid close to
market price. Tributary’s model would capture this change by setting β in Eq. 3.2 to zero. With
higher bids, Tributary would acquire fewer resources because preemption would be less likely.
The amount of resources acquired would still exceed the amount of resources required as they
would still have non-zero preemption probabilities.

Although Tributary extracts significant benefit from the refunds, it still outperforms AutoScale
without it. For example, in a simulation with this billing model modification, Tributary still
reduces cost by 31% compared to AutoScale with sufficient buffer to match numbers of “slow”
requests, for the Clarknet trace using the reactive scaling policy. As expected, Tributary continues
to meet SLOs with high likelihood, as it continues to diversify its resource pool and acquire
buffers of resources (albeit smaller ones) to account for preemption events.
Free market behavior. In its current design, the AWS EC2 spot markets do not behave as free
markets [21]. Customers specify their bid prices for a given resource, but generally do not pay
that amount. Instead, a customer is billed according to the EC2-determined spot price for that
resource. It is possible, perhaps even likely as the spot market becomes widely popular, that AWS
will transition toward a billing policy in which users are charged their bid price, instead of the
market price, and prices move based on supply and demand rather than unknown seller policies.
This change would render the commonly used strategy of bidding far above the market price (e.g.,
bidding the on-demand price) obsolete. Tributary’s behavior would not change significantly, as it
already often sets bid prices close to market prices and explicitly considers revocation risks, and
we believe it would therefore outperform other approaches by even larger margins.

3.3.7 Comparing to State of the Art

This section compares Tributary’s support for elastic services to two state-of-the-art resource
managers designed for preemptible instances. Since neither system was designed for elastic
services with latency SLOs, Tributary unsurprisingly performs significantly better.
Exosphere. We implemented ExoSphere’s allocation strategy, described in §3.3.3, with the
following assumptions and modifications: (i) The ExoSphere paper did not specify whether the
correlation between markets is recomputed as time moves on. In order to avoid the need to
constantly reconstruct ExoSphere’s resource footprint, we assumed static correlation between
markets. (ii) As the ExoSphere paper does not provide guidelines as to how to choose α, we
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experimented with a range of α from 1 to 109. Higher α instructs ExoSphere to be more risk
averse at the expense of higher cost.

Fig. 3.5 shows the normalized cost and percentage of “slow” requests served for Tributary and
for ExoSphere with small (1) and large (109) values of α. These experiments were performed on a
further scaled-up version of the ClarkNet trace (100x of already-scaled version), since ExoSphere
was designed for 100s to 1000s of instances and performs poorly at a scale of 10s.4 In our
experiments, we observed that Exosphere with a small α tends to acquire mainly the cheapest
resources, inducing little diversity and increasing the number of “slow” requests in the event of
preemptions. Tributary’s advantage in both cost and SLO attainment results from Tributary’s
exploitation of spot instance characteristics (§3.3.4).
Proteus. We implemented Proteus’s allocation strategy, described in §3.3.3, modified to acquire
only spot resources (reducing cost with no significant change in SLO attainment). Fig. 3.5
compares Tributary and Proteus for the ClarkNet trace, for two different scaling policies. While
Proteus achieves lower cost than Tributary, it experiences a large increase in ”slow” requests.
This increase is due to Proteus not diversifying its resource pool, instead only acquiring resources
based on reducing average per-core cost. When told by the scaling policy to acquire additional
resources, similarly to AutoScale buffers (§3.3.4), Proteus is unable to match Tributary’s number
of ”slow” requests no matter how large the buffer (and, thus, how high the cost). This is once
again due to the lack of diversity in the resources that Proteus acquires.

3.3.8 Prediction Model Evaluations
This section evaluates the accuracy of the preemption prediction models used by Tributary, which
are described in §3.1.1. The recent Proteus system [67] used the historical median probability of
preemption depending on the instance type, availability zone and the difference between the user
bid price and the spot market price of the resource. Tributary improves prediction accuracy by
using machine learning inference models trained with historical spot market data with engineered
features. Fig. 3.6 shows the accuracy and F1 scores for prediction models based on the historical
median, a logistic regression classifier, a multilayer perceptron neural network (MLP NN) and a
long short term memory recurrent neural network (LSTM RNN). These models were trained on
spot market data from 06/06/16 – 01/22/17 and were evaluated on data from 01/23/17 – 03/20/17
for instance types c4.large, c4.xlarge and c4.2xlarge in us-west-2.

The output of the prediction models is whether the instance specified in a query will be
preempted within the preemption window. Accuracy scores are calculated by the number of
samples classified correctly divided by total number of samples. F1 scores, which account for
data skew, are a good accuracy measurement because the data set is skewed toward preemptions
at lower bid deltas and non-preemptions at higher bid deltas. The LSTM RNN model provides
the best accuracy and the best F1 because it is able to capture the temporal nature of the AWS
spot market. LSTM increases accuracy by 11% and the F1 score by 27% compared to using the
historical median. The MLP NN model performs worse than the historical median model for
accuracy, but its F1 score is higher because unlike the historical median model, the MLP model

4At small scales, ExoSphere with low α had no resource diversity. With large α, it acquired too many resources,
increasing its cost.
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Figure 3.6: Accuracies and F1 scores (accounts for data skew) for predicting preemption of AWS spot
instances. The LSTM RNN outperforms prior techniques (blue bar) by 11% on the accuracy metric and
27% on the F1 score metric.

considers advanced features when predicting preemptions as described in §3.1.1. The increased
accuracy of the LSTM RNN model translates to Tributary’s effectiveness. When using the LSTM
RNN model, Tributary runs at ≈37% less cost on the ClarkNet workload compared to Tributary
using historical medians, because the historical median model overestimates the probability of
preemption, causing Tributary to acquire more resources than necessary.

3.4 Summary
Tributary exploits AWS spot instances to meet latency SLOs for elastic services at lower cost.
By predicting preemption probabilities and acquiring diverse resource footprints, Tributary can
aggressively use collections of cheap spot instances to reliably meet SLOs even in the face of bulk
preemptions. Our experiments show cost savings of 81–86% relative to using non-preemptible
on-demand instances and 47–2% relative to traditional high-risk use of spot instances.

Tributary exploits AWS properties, such as dynamic spot markets and preemption based
thereon. We believe its approach would also work for other clouds offering preemptible resources,
if they expose enough information to predict preemption probabilities, probabilities, which AWS
provides via the visible spot market prices. Currently, Google Cloud Engine [15] does not expose
such a signal for its preemptible instances. For private clouds, exposing preemption logs could
provide the historical view, but even better predictions can be enabled by exposing scheduler
state.
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Chapter 4

Stratus: Cost-aware container scheduling in
the public cloud

Continuing the theme to increase value-realized of user applications in shared compute envi-
ronments by reducing users’ cost of running applications, this chapter focuses on our work on
Stratus [33], a virtual cluster scheduler suited to cost-effectively schedule batch analytics jobs in
public clouds.

Public cloud computing has matured to the point that many organizations rely on it to offload
workload bursts from traditional on-premise clusters (so-called “cloud bursting”) or even to
replace on-premise clusters entirely. Although traditional cluster schedulers could be used to
manage a mostly static allocation of public cloud virtual machine (VM) instances,1 such an
arrangement would fail to exploit the public cloud’s elastic on-demand properties and thus be
unnecessarily expensive.

A common approach [28, 45, 92, 94] is to allocate an instance for each submitted task and
then release that instance when the task completes. Although straightforward, this new-instance-
per-task approach misses significant opportunities to reduce cost by packing tasks onto fewer
and perhaps larger instances. Doing so can increase utilization of rented resources and enable
exploitation of varying price differences among instance types.

What is needed is a virtual cluster (VC) scheduler that packs work onto instances, as is done
by traditional schedulers, without assuming that a fixed pool of resources is being managed. The
concerns for such a scheduler are different than for traditional clusters, with resource rental costs
being added and queueing delay being removed by the ability to acquire additional resources
on demand rather than forcing some jobs to wait for others to finish. Minimizing cost requires
good decisions regarding which tasks to pack together on instances as well as when to add more
instances, which instance types to add, and when to release previously allocated instances.

Stratus is a scheduler specialized for virtual clusters on public IaaS platforms. Stratus adap-
tively grows and shrinks its allocated set of instances, carefully selected to minimize cost and
accommodate high-utilization packing of tasks. To minimize cost over time, Stratus endeavors to
get as close as possible to the ideal of having every instance be either 100% utilized by submitted
work or 0% utilized so it can be immediately released (to discontinue paying for it). Via aggressive

1We use “instance” as a generic term to refer to a virtual machine resource rented in a public IaaS cloud.
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use of a new method we call runtime binning, Stratus groups and packs tasks based on when they
are predicted to complete. Done well, such-packed tasks will fully utilize an instance, complete
around the same time, and allow release of the then-idle instance with minimal under-utilization.
To avoid extended retention of low-utilization instances due to mispredicted runtimes, Stratus
migrates still-running tasks to clear out such instances.

Stratus’s scale-out decisions are also designed to exploit both instance type diversity and
instance pricing variation (static and dynamic). When additional instances are needed in the
virtual cluster in order to immediately run submitted tasks, Stratus requests instance types that
cost-effectively fit sets of predicted-completion-time-similar tasks. We have found that achieving
good cost savings requires considering packings of pending tasks in tandem with the cost-per-
resource-used of instances on which the tasks could fit; considering either alone before the other
leads to many fewer <packing, instance-type> combinations considered and thereby higher costs.
Stratus co-determines how many tasks to pack onto instances and which instance types to use.

Simulation experiments of virtual clusters in AWS spot markets, driven by cluster workload
traces from Google and TwoSigma, confirm Stratus’s efficacy. Stratus reduces total cost by 25%
(Google) and 31% (TwoSigma) compared to an aggressive state-of-the-art non-packing task-per-
VM approach [117]. Compared to two state-of-the-art VC schedulers that combine dynamic
virtual cluster scaling with job packing, Stratus reduces cost by 17–44%. Even with static instance
pricing, such as is used for AWS’s on-demand instances as well as Google Compute Engine and
Microsoft Azure, Stratus reduces cost by 10–29%. Attribution of Stratus’s benefits indicates that
significant value comes from each of its primary elements—runtime-conscious packing, instance
diversity-awareness, and under-utilization-driven migration. Further, we find that the combination
is more than the sum of the parts and that failure to co-decide packing and instance type selection
significantly reduces cost savings.

This chapter makes four primary contributions. (1) It identifies the unique mix of character-
istics that indicate a role for a new job scheduler specialized for virtual clusters (VCs). (2) It
describes how runtime-conscious packing can be used to minimize under-utilization of rented
instances and techniques for making it work well in practice, including with imperfect runtime
predictions. (3) It exposes the inter-dependence of packing decisions and instance type selection,
showing the dollar cost benefits of co-determining them. (4) It describes a batch-job scheduler
(Stratus) using novel packing and instance acquisition policies, and demonstrates the effectiveness
of its policies with trace-driven simulations of two large-scale, real-world cluster workloads.

4.1 Stratus

Stratus is a VC scheduler designed to achieve cost-effective job execution on public IaaS clouds.
Stratus combines a new elasticity-aware packing algorithm (§4.1.2) with a cost-aware cluster
scaler (§4.1.3) that exploits instance type diversity and instance pricing variation. Stratus reduces
cost in two ways: (1) by aligning task runtimes so (ideally) all tasks on an instance finish at
the same time, allowing it to transition quickly from near-full utilization to being released and
(2) by selecting which new instance types to acquire during scale-out in tandem with task packing
decisions, allowing it to balance the cost benefits of instance utilization and time-varying instance
prices. This section describes the design and implementation of Stratus.
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Figure 4.1: Stratus architecture

4.1.1 Architecture

This section presents the architecture and key components of Stratus (Fig. 4.1) and walks the
reader through the lifetime of a job processed by Stratus. Stratus acts as the scheduling component
of a runtime environment, such as a YARN or Kubernetes cluster. The Resource Manager (RM)
(e.g., YARN RM/Kubernetes master) is still responsible for enforcing scheduling decisions in the
environment.

Jobs submitted to the VC are processed as follows:
(1) Job requests are submitted by users and received by the Resource Manager (RM). A job request
contains the number of tasks to be launched and the amount of resource required to execute each
task.
(2) If a job is admitted, the RM spins off task requests from the job and dispatches them to the
Stratus RM Proxy. The RM Proxy is responsible for receiving state events (e.g., new task request,
task failure, task completion, etc.) from the RM and routing them to the scheduler.
(3) The scheduler consists of the packer (§4.1.2) and the scaler (§4.1.3). The packer decides
which tasks get scheduled on which available instances. The scaler determines which and when
VM instances should be acquired for the cluster as well as when task migrations need to be
performed to handle task runtime misalignments (§4.1.4). Given a task request from the RM
Proxy, the packer puts the task request into the scheduling queue. Pending tasks are scheduled in
batches during a periodic scheduling event; the frequency of the scheduling event is configurable.
(4) The packer and scaler make scheduling and scaling decisions based on task runtime estimates
provided by a Runtime Estimator.
(5) If there are tasks that cannot be scheduled on to any available instances in the cluster, the
packer relays the tasks along with their runtime estimates to the scaler, which decides on the
instances to acquire for these tasks. The scaler sends the corresponding instance requests to
the Cloud Connector, which is the pluggable cloud-provider-specific module that acquires and
terminates instances from the cloud for Stratus.
(6) The Cloud Connector translates the request and asynchronously calls IaaS cloud platform
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APIs to acquire new instances. When new instances are ready, the Cloud Connector notifies the
packer via an asynchronous callback.
(7) The scheduler informs the RM of task placement decisions, availability of new instances, and
tasks to migrate at the end of a scheduling event.
(8) The RM enforces task placements and adds new instances to its pool of managed instances.
(9) After tasks complete on instances, completion events are propagated to the RM. A job is
completed when the RM receives all task completion events of the job’s tasks, and its task runtimes
are reported to Runtime Estimator to update job run history (§4.1.4).

4.1.2 Packer
This section describes the on-line packing component of Stratus, which places newly arriving
tasks on to already-running instances. The Scaler (§4.1.3), which decides which new instances to
acquire based on the packing properties of tasks that cannot be packed on to running instances,
uses a compatible scheme.

Setup

The primary objective of Stratus is to minimize the cloud bill of the VC, which is driven mostly
by the amount of resource-time (e.g., VCore-hours) purchased to complete the workload. Thus,
the packer aims to pack tasks tightly, aligning remaining runtimes of tasks running on an instance
as closely as possible to each other; otherwise, some tasks will complete faster than others and
some of the instance’s capacity will be wasted.
Packer input. The inputs to the packer are:
(1) Queue of pending task requests, where each task request contains the task’s resource vector
(VCores and memory), estimated runtime, priority, and scheduling constraints (e.g., anti-affinity,
hardware requirements, etc.).
(2) Set of available instances. For each instance, Stratus tracks the amount of resource available on
the instance and the remaining runtimes of each task assigned to the instance (i.e., time required
for the task to complete).
Runtime binning. The packer maintains logical bins characterized by disjoint runtime intervals.
Each bin contains tasks with remaining runtimes that fall within the interval of the bin. Similarly,
an instance is assigned to a bin according to the remaining runtime of the instance, which is the
longest remaining runtime of the tasks assigned to the instance. In both cases, the boundaries of
the intervals are defined exponentially, where the interval for the ith bin is [2i−1, 2i). For ease
of discussion, we compare runtime bins according to the upper-bound of their defined runtime
intervals—i.e., the smallest bins are bins with runtime intervals [0, 1), [1, 2), [2, 4), . . . , and so on.

Algorithm description

At the beginning of a scheduling event, the packer organizes tasks and instances into their
appropriate bins. Tasks are then considered for placement in descending order by runtime—
longest task first. For each task, the Packer attempts to assign it to an available instance in two
phases: the up-packing phase and the down-packing phase.
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Up-packing phase. In placing a task, the packer first looks at instances from the same bin as the
task. If multiple instances are eligible for scheduling the task, the packer chooses the instance
with the remaining runtime closest to the runtime of the task.

If the task cannot be scheduled on any instance in its native runtime bin, the packer considers
instances in progressively greater bins. If there are multiple candidate instances from a greater
bin, the task is assigned to the instance with the most available resources (as opposed to assigning
to the instance with the closest remaining runtime). The reasoning is to leave as much room as
possible in the instance, which will increase the chance of being able to schedule tasks from the
same bin on to the instance when tasks arrive in the future. If the task cannot be scheduled on any
instance, the packer proceeds to examine instances in the next-greatest bin until all instances in
greater bins have been examined.

While up-packing can cause instance runtime misalignments as Stratus attempts to pack tasks
with shorter runtimes on instances with greater remaining runtimes, it also increases utilization
of instances in greater bins and prevents the acquisition of new instances for small and short
tasks when there are enough resources to run them on already-acquired instances. Up-packing
minimally disrupts the scheduling opportunities of tasks of greater bins arriving in the future, as
the up-packed task uses only half of the remaining runtime on the instance. Fig. 4.2 shows a toy
example of runtime binning in the up-packing phase on a single instance over time.
Down-packing phase. After all greater bins have been examined for VMs to schedule the task
on, the Packer examines progressively lesser bins for a suitable VM in the down-packing phase.
If there are multiple candidate VMs from a lesser bin Stratus, like when up-packing, finds the VM
with the most available resources that the task fits on. Down-packing the task promotes the VM to
the task’s native runtime bin.

While promoting an instance may cause task runtime misalignments on an instance, it is
counter-intuitively beneficial in practice. Since tasks with similar runtimes and resource requests
are often submitted concurrently/in close-succession for batch data processing jobs, promoting a
large, poorly-packed instance may allow for more opportunities to fully utilize the instance with
unscheduled tasks of such a job—especially because the need to down-pack implies that VMs that
satisfy the current task’s resource requirement be found neither in the task’s native runtime bin
nor in greater runtime bins. Promoting an instance also increases the chance of better utilizing the
instance in later scheduling cycles, since tasks are always up-packed prior to being down-packed.
Furthermore, if task runtimes are already inaccurate, it is likely that some of the tasks assigned to
an instance in fact belong in some greater bin, especially if an instance is large. If a promoted
instance remains under-utilized, instance clearing (§4.1.4) can then be used to de-allocate the
instance and redistribute tasks to their rightful bins.

4.1.3 Scaler
When Stratus does not have enough instances to accommodate all tasks in a scheduling event, it
scales out immediately and acquires new instances for the unscheduled tasks. Stratus’s process of
deciding which instances to acquire is iterative. It decides on a new instance to acquire at the end
of each iteration, assigns unscheduled tasks to the instance, and continues until each unscheduled
task is assigned to some new instance.

During scale-out, Stratus considers task packing options together with instance type options,
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(a) Tasks A, B, and C scheduled. All tasks in [16, 32) bin. Instance in [16, 32) bin. One empty slot.
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(b) Time progresses and tasks A and B move down to [8, 16) bin. Task C remains in [16, 32) bin.
Task D scheduled on instance in [16, 32) bin. Instance remains in [16, 32) bin. Instance is full.
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(c) Time progresses further and tasks A and B finish. Task C moves down to [4, 8) bin. Task D moves
down to [8, 16) bin. Task E is up-packed to the instance and placed in [1, 2) bin. Instance moves
down to [8, 16) bin. One empty slot.

Figure 4.2: Toy example showing how runtime binning works with the scheduling of tasks on to an
instance over time (Subfigures a–c). This simple example assumes all tasks are uniformly sized, and that the
instance can hold four tasks in total. The solid gray box outlines the instance. Runtime bins are color-coded
(e.g., blue and red represent bins [16, 32) and [8, 16), respectively). Bars inside the instance represent tasks
assigned to it. Task bars are color-coded to the bins they are assigned to. The dotted box shows the runtime
bin that the instance assigned to.
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seeking to achieve the most cost-efficient combination. In each iteration, it considers unscheduled
tasks in each bin in descending order of runtime bins. The scaler constructs several candidate
groups of tasks to be placed on the new instance. Each candidate group is assigned a cost-efficiency
score for each possible instance type. The candidate group with the greatest cost-efficiency score
is assigned to its best-scoring instance type, which is acquired and added to the virtual cluster.

Considering both in tandem is crucial to achieving high cost-efficiency. Doing either (task
packing or instance type selection) in isolation, and then doing the other, results in too many
missed opportunities—selecting instance types first leads to lower utilization of selected instances
due to poor packing fits, whereas packing tasks first excludes opportunities to exploit dynamic
price variations by limiting the instance sizes that make sense. Stratus’s iterative approach balances
the complexity of the potentially massive search space of combinations with the importance of
exploring varied points in that space.
Candidate task groups. Candidate task groups are constructed so that the ith group contains the
first i tasks in the list sorted in descending runtime order. The first group contains the longest
task, the second group contains the two longest tasks, and so on. The scaler continues to build
candidate task groups until the aggregate resource request of the largest task group exceeds that of
the largest allowed instance type.
Cost-efficiency score. The cost-efficiency score, computed as

score =
normalized used constraining resource

instance price
,

for each candidate <task group, instance> pair, evaluates the resource efficiency of the placement
of a candidate task group on a candidate instance relative to the cost of the instance.

To find the normalized used constraining resource, we first find the constraining resource type
by computing the utilization for each resource type (VCores, memory) as if the task group is
assigned to the instance. The resource type yielding the greatest utilization is the constraining
resource type. Knowing the constraining resource type, the amount of constraining resource
requested by the task group is the used constraining resource. Finally, we normalize the used
constraining resource by the amount of resource of the constraining resource type available on the
smallest instance type that we can acquire to obtain the normalized used constraining resource.
The normalized used constraining resource is used to facilitate comparisons across <task group,
instance> pairs with different constraining resource types.

For example, if a candidate task group requests 4 VCores and 1 GiB of memory and a candidate
instance has 8 VCores and 16 GiB of memory, the constraining resource type would be VCores
(4 VCores / 8 VCores > 1 GiB / 16 GiB), the used constraining resource would be 4 VCores.
Assuming that the smallest instance type that we can acquire provides 2 VCores, the normalized
used constraining resource would be 2 (= 4 VCores / 2 VCores).

Intuitively, if only a single resource dimension is considered, acquiring the instance with the
greatest cost-efficiency score is equivalent to acquiring the instance with the lowest cost-per-
resource-used.

At the end of each scale-out iteration, the candidate (task group, instance) pair with the best
cost-efficiency score is chosen, and the corresponding task group is scheduled on to the instance.
If there remains any unscheduled tasks, the scaler begins another iteration to place the rest of the
tasks and continues until all tasks are scheduled.
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Scaling in. There are two opportunities when Stratus terminates instances: (1) when an instance
does not have any tasks assigned to it, and (2) when it continuously experiences low utilization, in
which case its tasks are migrated off of it (§4.1.4).
Runtime interval bin selection. With a sufficient amount of tasks in a runtime bin, more instance
scale-out options become available—specifically for instances that are larger, potentially more
cost-efficient, and less prone to resource fragmentation. As often observed [47, 107], job and
task runtime distributions are frequently long-tailed. We therefore define runtime bin intervals
exponentially to enable a principled way to group tasks with runtimes at the tail while not
sacrificing packing efficiency for tasks that fall in lesser interval bins. Defining runtime bins
exponentially also allows us to bound the number of bins without having to specify statically-sized
runtime intervals or determine a particular best bin size.
Bidding strategy and instance revocations. Stratus does not try to take advantage of the refund
policy of spot instance revocations, where spot instances revoked within the first hour are fully
refunded; rather, it focuses only on attaining cost-efficiency by exploiting cost-per-resource
dynamicity2. Stratus uses a safe instance bidding scheme, where it always bids for an instance at
its corresponding on-demand price. Shastri et al. [117] found that bidding the on-demand price
for Spot instances result in very long times-to-revocation (25 days on average). Our experiments
confirm their observation, as only a single spot price-spike was experienced in all our experiments.

4.1.4 Runtime estimates
Runtime Estimator Runtime Estimator is the component that provides runtime estimates from a
queryable task runtime estimate system for tasks submitted to Stratus. The topic of estimating
job and task runtimes has been researched extensively [85, 119, 123, 124], and Stratus does not
attempt to innovate on this front; instead, we obtained a copy of JVuPredict [124] and modified it
to predict average task runtime rather than job runtime.

JVuPredict’s algorithm works as follows: For each incoming job, JVuPredict identifies can-
didate groups of similar jobs in job execution history based on job attributes (e.g., submitted
by same user, same job name submitted during the same hour of day,. . . , etc). For each group,
several candidate estimates are produced by applying estimators (average, median,. . . , etc) to the
average task runtimes of all jobs in the group. JVuPredict associates the estimate produced by the
attribute-estimator pair that historically performs best (measured by normalized median absolute
error) to the incoming job.
Handling runtime misestimates. The accuracy of task runtime estimates plays a large role in
Stratus’s packing algorithm. While Stratus’s use of exponentially-sized runtime bins already
tolerates some degree of task runtime misestimates, it is beneficial to incorporate more specialized
methods to deal with larger misestimates. Stratus uses two heuristics to mitigate the impact of
task runtime misestimates on cost:
Heuristic 1: Task runtime readjustment. In adjusting for task runtime under-estimates, Harchol-
Balter et al. [66] observed that the probability that a process with age T seconds lasts for at least
another T seconds is approximately 1/2. Stratus thus readjusts task runtime underestimates by

2In the EC2 spot market, the cost-per-resource (e.g., VCore) of instances changes frequently. For m4 instances in
us-west-2 only, the sorted order of cost-per-VCore changes up to 850 times/day (Aug. to Sept. 2017).
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Instance/
A bundle of resources rented from the IaaS platform, generally in the form
of a virtual machine (e.g., Amazon EC2).

Server/
VM
Container An isolated environment deployable in an instance, e.g., a nested-VM or

Linux container.
Resource Instance hardware resources, for example, VCores and memory.
Resource util Aggregate percent instance resources allocated to tasks.
Task The smallest logical unit of a computation, typically executed in a single

container.
Job A collection of tasks that perform a computation submitted by the user of a

cluster.
Runtime bin Logical bin defined by a time interval, consisting of a set of instances whose

task runtimes are estimated to continue to run for less than the upper bound
of the time interval. Used by Stratus to assign tasks of similar runtimes on
to instances.

Table 4.1: Summary of terms used.

assuming that the task has already run for half of its runtime.
Heuristic 2: Instance clearing. Stratus migrates tasks away from instances that continuously (e.g.,
for more than three scheduling events of one minute each in our experiments) experience low
resource utilization due to task runtime mis-alignments of various scales such that they can be
terminated safely without losing task progress. We define such an instance as one whose resources
are less than 50% utilized in each dimension, since this is often when all tasks on an instance can
be migrated to a smaller instance based on how many CSPs size their VMs [8, 10, 15].

VM candidates are evaluated for clearing in decreasing order of cost-per-resource-used. For
each VM candidate, either all or none of its tasks are migrated—if an instance only ends up
partially-migrated, its utilization decreases while the VC operator still has to pay the same amount
of money to keep the instance running; therefore, whenever an instance is selected to be migrated,
it is placed on a blacklist such that no new tasks can be scheduled on to it. For each task on a
VM candidate, Stratus attempts to re-pack the tasks on to currently running instances using the
packing algorithm described in §4.1.2. If no suitable instance is found, Stratus may also choose to
acquire a new, potentially smaller/cheaper instance on which to place all of a candidate’s tasks.
Stratus computes the tradeoff of clearing an instance before executing the task migrations. Stratus
only clears an instance if the predicted runtime for the instance’s longest task is greater than the
estimated migration time (plus spin-up time, in the case of new instance acquisitions).

4.2 Experimental setup

We use simulation-based experiments to evaluate Stratus and other VC scheduling approaches in
terms of dollar cost, resource utilization, and job latency. This section describes our experimental
setup.
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Figure 4.3(a): Task runtime distributions of the
Google and TwoSigma traces. The time axis is
plotted in log-scale.
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Figure 4.3(b): PMF of the task runtime estima-
tion error of the modified JVuPredict.

4.2.1 Environment
Simulator. We built a high-fidelity event-based workload simulator that takes as input a job trace
(§4.2.2) and a Spot market trace for each allowed instance type (discussed below). It simulates
instance allocation and job placement decisions made by evaluated schedulers (§4.2.3), advancing
simulation time as jobs arrive and complete. The simulator includes instance spin-up delays
consistent with observations on AWS [93, 117], drawing uniformly from instance spin-up times
ranging from 30 to 160 seconds. Container migration times are computed based on the container’s
memory footprint and a transfer rate of 160MBps for container memory [117]. To simulate the
effect of spot market price movements, including the very rare spot instance revocations,3 we use
price traces provided by Amazon [11] spanning a three month period starting from June 5th, 2017.
Instance types and regions available. We limit our experiments to use instances of the same
family in EC2 (m4 instances) in order to (1) avoid unknown performance comparisons among
compute resources4 and (2) justify runtime estimates produced by JVuPredict, as JVuPredict does
not consider tasks’ runtime environments (e.g., underlying VM configuration) when generating
runtime estimates5. We list the amount of resources available in each of the instance types in
Table 4.2, and we assume that valid instance requests are always fulfilled. We limit instance
allocations to the us-west-2 region, because migrations and data transfers across regions incur
significant cost.
VM acquisition/termination. For all evaluated schedulers, (1) instances are bid for at or above
(HotSpot) the on-demand price, and (2) an instance is voluntarily released to the CSP when no
more tasks are running on it.

3Spot instance revocation can be determined from the spot market price trace, because they occur when the
market price exceeds the bid price. We use the common approach of bidding the on-demand price and, like others,
observe that revocation is very infrequent [67, 117].

4Amazon used to report ECU as a unifying measurement to describe the CPU performance across varying
instance types, but ECU measurements have since slowly disappeared from EC2’s documentation, presumably due to
the difficulty in summarizing the compute power of different instance types in a single number.

5The Runtime Estimator is a pluggable component which can be extended to use runtime estimates produced by
a more sophisticated runtime estimator that is VM configuration aware [132].
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Instance type VCores Memory
m4.large 2 8GiB
m4.xlarge 4 16GiB
m4.2xlarge 8 32GiB
m4.4xlarge 16 64GiB
m4.10xlarge 40 160GiB
m4.16xlarge 64 256GiB

Table 4.2: The resource capacity of each instance type.

4.2.2 Workload traces
Our experiments use two traces from production clusters. Fig. 4.3a shows their task runtime
distributions. For each trace, our evaluations use twenty 1-day ranges of the trace, starting at
random points within the traced period. We filter out jobs that start before the trace start time
and jobs that end after the trace end time. In addition to avoiding inclusion of partial jobs, this
filtering removes long-running services from the Google trace, allowing the evaluation to focus
on interactive and batch jobs.
Google trace. The Google trace [106, 107], released in 2011, records jobs run on one of Google’s
production clusters with 12.5k machines spanning a period of 29 days. The amount of requested
resources for each task has been obfuscated by Google, with each dimension re-scaled to have a
value between 0 and 1 based on the largest capacity of the resource available on any machine in
the trace. In our simulations, for each task resource dimension, we scale the requests to the largest
corresponding resource dimension of instance types used (64 VCores and 256 GiB).

We observe the following job/task properties in the filtered Google trace: (1) Tasks are
typically CPU-heavy (i.e., tasks are limited by the CPU dimension when scheduled), (2) the
number of tasks per job is very small—in fact, more than 75% of the jobs contain less than 10
tasks, and (3) tasks are short, with most shorter than two minutes.
TwoSigma trace. The TwoSigma trace [24] contains 3.2 million jobs and was collected on two
private computing clusters of Two Sigma, a quantitative hedge fund, over a nine-month period
from Jan. to Sept. 2016. The clusters consist of a total of 1313 machines with 24 CPU cores and
256GiB RAM each. The majority of jobs in the TwoSigma trace are batch-processing jobs that
analyze financial data with home-grown data analysis applications or Spark [134] programs. The
workload does not contain any long-running services.

We observe the following job/task properties in the TwoSigma trace: (1) tasks typically have
substantial memory footprints, (2) number of tasks per job is greater than in the Google trace, and
(3) tasks are longer on average compared to tasks from the Google trace.
Runtime predictor performance. We report the task runtime estimate error profiles of the
modified JVuPredict (§4.1.4) for both traces in Fig. 4.3b. The estimates are less accurate in the
TwoSigma trace compared to the Google trace because the estimate quality largely depends on (1)
the ability of JVuPredict to identify similar jobs in the history and (2) the variability of runtimes
within the group of similar jobs. TwoSigma trace is reported [103] to be inferior on both measures.
Assumptions We make the following assumptions about jobs and tasks in our simulation work-
loads: (1) tasks can be migrated without losing progress potentially using checkpoint-restore
solutions such as CRIU [9], (2) tasks do not have any hard placement constraints other than (for
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some) anti-affinity, (3) there are no inter-task dependencies in the workloads, and (4) decisions
regarding task co-location have minimal impact on task runtimes.

Of the above, (1) is recommended practice in implementing distributed applications, and (2)
and (3) arise in part from the obfuscation of production data in the traces. We believe that (4) is a
reasonable premise for two reasons. First, interference effects between two tasks co-located on a
VM instance would likely still be present if they each ran in their own smaller instance, because
smaller instances similarly share physical hardware. Second, some co-location effects are already
reflected in the runtimes recorded in the traces, since both traced clusters co-locate tasks.

4.2.3 Approaches evaluated
Our experiments compare Stratus against several alternative solutions. Each solution is imple-
mented as closely as possible to its respective source documentation. This section introduces
these approaches and modifications made to adapt them to the problem of minimizing the cost of
running a workload where tasks have multi-dimensional resource requests and varying runtimes.
HotSpot: HotSpot (§4.4) is a single-task-per-instance VC scheduler that always chooses the
cheapest instance type on which a new task will fit and will migrate the task if a different instance
type becomes cheaper before it completes. We build HSpot, a VC scheduler that implements
HotSpot’s migration and scaling policies, and enhance it with perfect runtime knowledge (unlike
Stratus’s imperfect predictions) so it can evaluate the tradeoff between cost added due to migration
overhead vs cost reduction for running on the new cheaper instance.
Spot Fleet + ECS: A reasonable way to place containerized tasks on to Spot instances is to use
one of Amazon’s ECS container placement strategies in combination with EC2 Spot Fleet [12],
which acquires and releases Spot instances based on the allocation policy specified by the user.
We build a scheduler Fleet that uses the most cost-efficient VM acquisition policy in Spot Fleet
(lowestPrice [16]), in tandem with the most cost-efficient packing strategy in ECS (binpack [13]).
§4.4 provides more detail on Spot Fleet and ECS, along with their respective policies.
SuperCloud Spot instances: SuperCloud-Spot [74] is a packing VC scheduler specifically
designed for scheduling nested VMs on Spot instances. We build SCloud, implementing features
as closely as possible to what was documented in the paper describing SuperCloud-Spot.

SCloud uses SuperCloud-Spot’s greedy packing algorithm on the most-constrained resource
type rather than its dynamic programming (DP) algorithm, which cannot be generalized to tasks of
different sizes and with multiple resource request dimensions (a known NP-hard problem [102]).

SuperCloud-Spot’s original migration scheme is designed for AWS’s previous hour-based
billing model; SuperCloud-Spot therefore makes sub-optimal decisions when computing the
trade-off to re-pack tasks to new instances as it assumes no extra cost for leaving instances running
as long as the instance-hour has not yet expired. So, we enhance SCloud with both HSpot’s
migration scheme that is suited for instances that are charged per-second and perfect task runtime
knowledge. SuperCloud-Spot is described in more detail in §4.4.
AWS Fargate: AWS Fargate [14] is a service that allows users to run containerized workloads
without having to manage VM servers. We evaluated Fargate as an alternative to manually
deploying VM clusters and running tasks on top of it. As Fargate charges on-demand prices
per-resource plus a premium for managing containers for users, we posit the Fargate-based
solution to be much more expensive than any other VC scheduling alternatives. Indeed, simulated
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Figure 4.4: Average daily cost for each VC scheduler on the Google and TwoSigma workloads, normalized
to the most costly option for the given trace. Stratus reduces the cost of other schedulers by at least 17% in
both traces.

experiments show that at its current price-point (May 2018), Fargate costs on average 4.4× more
than HSpot. Our discussions thus focus on the Spot VC schedulers introduced above.

4.3 Experimental results

This section evaluates Stratus, yielding four key takeaways. First, Stratus is adept at reducing the
VC cloud bill, such as by 25–31% compared to the non-packing VC scheduler (HSpot). Second,
Stratus’s runtime binning and tandem-consideration of task packing and instance selection allows
it to reduce VC cost by 17–44% over the other packing-based VC schedulers (Fleet and SCloud).
Third, each of Stratus’s key techniques is important to achieving its cost reductions. Fourth,
Stratus’s instance clearing technique is beneficial and necessary in VC scheduling when runtime
estimates are inaccurate.
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4.3.1 Stratus vs state-of-the-art

This section compares Stratus against existing VC scheduling solutions such as HSpot, SCloud,
and Fleet.
Cost reduction. Fig. 4.4 shows the average daily costs of scheduling the Google and TwoSigma
workloads for each VC scheduler, normalized to the most expensive case for each trace. Stratus
outperforms the other VC schedulers by combination of its alignment of task runtimes and
coordinated task packing and instance type selection.

Stratus outperforms HSpot by reducing the cloud bill by 25% (Google) and 31% (TwoSigma)
through continuously packing newly arriving tasks on to cost-effective instances. Stratus also
reduces cost by 44% (Google) and 17% (TwoSigma) compared to SCloud. While ideas from
SuperCloud-Spot may have been well-suited for long-running services, it does not carry over well
to workloads where task runtimes can greatly vary (Google). SCloud’s scaling algorithm often
bids for large VMs to reduce fragmentation and improve cost-per-resource at the time of packing.
However, if task runtimes on the VM are misaligned, the large VMs acquired by SCloud will
often be under-utilized as tasks on the VM complete. Because SCloud does not specify how newly
arriving tasks are packed on to existing VMs, the resource holes will be unfilled until all tasks on
the VM completes. Stratus outperforms SCloud by a smaller margin on the TwoSigma workload
because (1) task runtimes on the TwoSigma workload tend to be longer and more runtime-aligned
(Fig. 4.3a) and because (2) task runtime estimates are significantly less accurate on the TwoSigma
trace (Fig. 4.3b).

Although Fleet utilizes on-line packing, it still incurs higher cloud bills compared to Stratus.
Stratus reduces the cloud bill of Fleet by 17% (Google) and 22% (TwoSigma). Aside from
Stratus’s runtime binning, another primary reason as to why Fleet’s use of on-line packing is not as
effective is due to its use of Spot Fleet’s lowestPrice scaling algorithm. Fleet always acquires the
cheapest (and frequently the tightest-fitting) instances for newly arriving tasks, leaving little room
to pack more tasks on an instance and leading to greater resource fragmentation. In addition, the
cheapest instance for a task may not be the most cost-efficient instance for the set of pending tasks
that are available. By considering the packing of groups of tasks and their runtime alignments
while selecting instance types, Stratus is able to achieve lower fragmentation and acquire instances
with better cost-per-resource-used.

To confirm this observation, we experimented with a version of Stratus that always selects the
best-fitting instance for a new task when scaling out (akin to Fleet) while using runtime binning.
Consistent with our observation that schedulers that always acquire best-fitting or cheapest-fitting
instances for individual tasks have little opportunity to pack, we observe the cost for Stratus
increases by 17% (Google) and 25% (TwoSigma), only slightly beating Fleet in both traces.
Resource utilization. Much of Stratus’s cost reduction comes from increased utilization of rented
resources. Fig. 4.5 shows the utilization of the constraining resource, VCore in the case of the
Google workload and memory for TwoSigma, for the four VC schedulers.

Stratus attains higher resource utilization than the other VC schedulers, achieving 86% and
79% utilization, respectively, for the two workloads. Stratus’s high resource utilization results
from its combination of aligning task runtimes in tasks packed onto a given instance, acquiring
instances of suitable sizes, and judicious use of instance clearing to avoid retaining under-utilized
instances on which most tasks already completed. Importantly, Stratus’s selection of instance
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Figure 4.5: Constraining resource utilization (VCores for Google and memory for TwoSigma) with the
different VC schedulers.

types during scale-out in light of different possible packing configurations, rather than only
considering packing after selection, significantly increases utilization. At the same time as both,
Stratus considers instance pricing differences per-resource-used, resulting in the overall cost
reductions described above.

Job latency. We define normalized job latency as the observed job latency normalized to an
idealized job runtime that incurs no scheduling or instance spin-up delays. Table 4.3 shows the
50th and 95th percentile normalized job latencies for each compared scheduler on each trace.

Overall, we observe that schedulers that always acquire new instances for tasks (SCloud
and HSpot) incur greater normalized job latency than those that pack (Fleet and Stratus) on
workloads with jobs that are mostly short and small (Google), as instance start-up delay can cause
proportionally significant job slowdowns. For workloads where jobs are longer (TwoSigma),
instance start-up delays are obviously less significant. And, with more memory-heavy tasks
(TwoSigma), use of migration for instance clearing induces marginally higher job latencies for
Stratus, because such tasks take longer to migrate.
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Google TwoSigma
Scheduler 50%-ile 95%-ile 50%-ile 95%-ile

Stratus 1.3 3.2 1.1 1.6
Fleet 1.2 3.1 1.0 1.4
HSpot 2.2 7.0 1.1 1.5
SCloud 2.5 11.4 1.2 2.0

Table 4.3: The normalized job latencies for each evaluated VC scheduler. Schedulers that pack continu-
ously (Stratus and Fleet) incur lower job latencies than those that do not (HSpot, SCloud) when jobs are
short and small (Google).

4.3.2 Benefit attribution: SCloud to Stratus

Stratus uses a combination of heuristics to reduce cost. This section evaluates the incremental
contributions of each by adding each to SCloud, one by one, until it matches Stratus. Fig. 4.6
shows the breakdown of how much of Stratus’s cost savings is realized with each heuristic added
to SCloud.
SCloud. We start the incremental build-up with SCloud, as described in §4.2.3, which only
implements features as explicitly noted in the original SuperCloud-Spot paper. As discussed
above (§4.3.1), Stratus reduces cost compared to SCloud by 44% on the Google trace and by 17%
on the TwoSigma trace.
Adding online vector bin packing. To close the gap between SCloud and Stratus, we add support
for packing new tasks on to running instances whenever possible, via the dot-product geometric
heuristic for online vector bin-packing [58, 102] to SCloud. This technique is effective in reducing
the cost of SCloud. But, there remains a cost-gap of 17% (Google) and 11% (TwoSigma) between
SCloud and Stratus.
Also adding Stratus’s scale-out policy. While SCloud’s greedy instance acquisition algorithm is
effective with tasks whose requests are uniform and tasks with resource requests only in a single
dimension, it performs less well when tasks request a varying amount of resources in multiple
dimensions. Using Stratus’s instance acquisition scheme that considers the cost-per-resource-used
of each group of tasks assigned on to each instance lowers the cost of SCloud with on-line packing
(by 8% on the Google workload and by 3% on the TwoSigma workload). Implementing SCloud +
on-line packing + Stratus’s scaling heuristic closes the cost gap between SCloud and Stratus down
to 9% (Google) and 8% (TwoSigma).
Also adding instance clearing. We found that incremental addition of instance clearing via
migration did not help much. Interestingly, we found that instance clearing is not effective
when used without taking task runtime into account. When instance clearing was used without
taking task runtime into account on the enhanced SCloud, we found that cost increased on the
TwoSigma trace for two reasons: (1) Although TwoSigma tasks are generally more uniform in
runtime compared to Google tasks (Fig. 4.3a), task runtimes can become increasing mis-aligned
with the introduction of instance clearing, as the runtimes of partially-run tasks may vary more
significantly. Task runtime mis-alignment causes the number of instance under-utilizations to
fluctuate, increasing the number of task migrations required. (2) TwoSigma tasks require more
time to migrate, as they have larger memory footprints. Without knowing the cost-benefit tradeoff
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Figure 4.6: Break-down of Stratus’s cost savings over SCloud (44% for Google and 17% for TwoSigma).
The cost of running workloads reduces as Stratus features are added to SCloud, starting with features from
left to right (on-line packing to runtime binning). The closer to zero, the smaller the cost difference between
SCloud and Stratus.
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of clearing an instance, which depends on how much longer tasks will run, the number of task
migrations can increase significantly.

Therefore, we enhance our enhanced SCloud with perfect runtime knowledge, such that it
only migrates instances when the benefit in migration outweighs the task migration cost. Even
with this unrealistic knowledge, instance clearing was not very effective in reducing cost in the
enhanced SCloud. With previous features plus instance clearing, SCloud reduces the cost-gap
by 1% (Google and TwoSigma) only. Stratus still reduces the cost by 8% (Google) and 7%
(TwoSigma).
Side note: Stratus without instance clearing. In addition to evaluating SCloud enhanced with
the previous features and instance clearing, we also evaluated Stratus with instance clearing
disabled. The latter increases the cloud bill for Stratus by 28% for the Google trace and by 15%
for TwoSigma. This shows that instance clearing is effective in assisting Stratus in putting tasks
into their rightful bins, whereas it is less effective on other packing schemes where tasks are
placed on to instances without regard to task runtimes. Unlike with the enhanced SCloud, less
time is spent on task migration by Stratus (up to 23% less). Futher, tasks that have been migrated
at least once in Stratus are only on average migrated 1.2 times before they reach an instance on
which they terminate.
Also adding runtime binning. Adding Stratus’s runtime binning to the rest of the enhancements
to SCloud, we end up with Stratus.

4.3.3 Attribution: dynamic instance pricing
Stratus’s scale-out policy exploits dynamic instance pricing better than the other VC schedulers,
because it considers different amounts of packing as part of selecting the most cost-efficient
instance types based on current prices. Even with statically-priced instances like those offered
in Google Cloud Engine and Microsoft Azure, however, Stratus’s use of runtime binning and
instance clearing to align co-located tasks’ completion times remains beneficial.

Fig. 4.7 shows the average daily costs of the VC schedulers when using only on-demand
instances instead of the price-varying spot instances used in our other experiments. As expected,
costs are much higher for all VC schedulers, since on-demand instances are usually more expensive
than spot instances. Although the differences are somewhat smaller, the relative rankings of the
VC schedulers are the same, and we find that Stratus still reduces cost compared to the others—by
10–29% for Google and by 14–25% for TwoSigma.

4.3.4 Sensitivity to runtime est. accuracy
This section characterizes the effect of task runtime estimate accuracy on Stratus.

Stratus with perfect runtime knowledge

We evaluated Stratus with perfect runtime knowledge on the Google and TwoSigma workloads to
see how much more Stratus could lower cost in this ideal scenario. As expected, enhancing Stratus
with perfect runtime knowledge improves its cost-efficiency, further reducing cost by 5% (Google)
and 9% (TwoSigma). Stratus with known runtimes reduces the cost of Stratus with JVuPredict by
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Figure 4.7: Average daily cost for each VC scheduler on the Google and TwoSigma workloads, using
only on-demand VMs, normalized to the most costly option for each trace.

improving the constrained resource utilization of Stratus from 86% to 90% (Google) and from
79% to 84% (TwoSigma), and by reducing the total task migration time by 64% (Google) and by
82% (TwoSigma).

Less accurate task runtime estimates necessarily induce more task runtime misalignment
for runtime-aware schedulers, leading to less effective usage of resources on instances as tasks
do not complete in a coordinated manner. When task runtime estimates are inaccurate, tasks
may unexpectedly complete early or late on an instance, leaving a portion of its resources idle.
Although Stratus has implemented instance clearing to reduce the number of active VMs in case
of under-utilization, instance clearing comes with non-trivial cost. Namely, tasks that are being
migrated do not make any progress but reserve resources on both the source and the destination
VMs, and during instance clearing, newly arriving tasks cannot be assigned on to the cleared VM
such that the cleared VM can be terminated when its task migrations complete.

Runtime estimate accuracy sensitivity

Our previous experiments evaluate Stratus using a real state-of-the-art task runtime estimator and,
in §4.3.4, a hypothetical runtime estimator providing perfect estimates. This section characterizes
the effect of task runtime estimate accuracy on Stratus at a finer granularity by controlling the
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Figure 4.8: Experiments varying the degree of runtime estimate error in completing jobs from traces. Each
experiment consists of tasks with runtime estimates set to runtime ∗ hτ , where hτ is uniformly sampled
from [h, 1) if h < 1 and from [1, h] if h ≥ 1.

Google TwoSigma
h 50%-ile 95%-ile 50%-ile 95%-ile

0.01 1.3 3.2 1.1 1.7
1 1.3 3.3 1.0 1.6
100 1.3 3.2 1.1 1.8

Table 4.4: Normalized job latencies for values of h (§4.3.4).

range of (synthetic) runtime estimate errors.
Setup. In each experiment, we generate runtime estimates for each task by scaling the actual
runtime of the task by a factor of hτ , where hτ is uniformly sampled from a range of [h, 1) if h < 1
and from [1, h] if h ≥ 1. Setting h = 1 is the same as using perfect task runtime knowledge. We
perform 29 experiments on each trace, with each experiment consisting of five runs on different
slices of the trace, for h ∈ [0.01, 100].
Cost trends and estimate accuracy. Fig. 4.8a shows Stratus’s sensitivity with respect to cost
to the accuracy of its task runtime estimates. As expected, cost increases as the quality of the
runtime estimates degrades, whether under-estimates (to the left in the graph) or over-estimates
(to the right). As runtime estimates become less accurate, Stratus makes less informed decisions
in choosing which tasks to co-locate on instances.

Comparing variants of Stratus with and without instance clearing (“no migration”), we observe
that instance clearing reduces the impact of runtime misestimates and misalignments. Stratus
is efficient even without instance clearing when runtime estimates are accurate (h = 1), only
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incurring 4% (Google) and 3% (TwoSigma) more cost than with instance clearing. Instance
clearing helps significantly when runtime estimates are increasingly inaccurate. Stratus achieves
31% (Google) and 14% (TwoSigma) lower cost at h = 0.01 with instance clearing than without.
Cost savings at h = 100 with and without instance clearing is comparable.

The disparate behavior between the results with and without instance clearing for the Google
and TwoSigma traces stems from the different characteristics of their jobs, as discussed in §4.2.2:
TwoSigma jobs consist of tasks longer in duration (the time that new instances remain well-packed
is longer) and often have more tasks per job (there are more tasks with similar runtimes).
Instance acquisition/clearing and estimate accuracy. The blue line in Fig. 4.8b shows Stratus’s
sensitivity to task runtime estimates with respect to number of instances acquired, while the red
line shows Stratus’s sensitivity to task runtime estimates with respect to number of instances
cleared. Table 4.4 shows the normalized job latencies for polar values of h on the Google and
TwoSigma traces.

As task runtime estimates become increasingly accurate, opportunities to release empty
instances increase as task runtimes become better-aligned, decreasing the need to migrate tasks
using the instance clearing heuristic. This, however, also means that as new tasks arrive there are
less instances available on which to place the new tasks, leading to a greater number of instances
acquired and a larger portion of job latency spent on waiting for instances to spin up.

Similarly, as task runtime estimates become less accurate, fewer instances are acquired since
instances generally “stick around” for a longer period of time due to mis-aligned runtimes. Mis-
aligning runtimes raises the chance to trigger instance clearing, increasing the number of instances
cleared and causing the job latency to be increasingly dominated by task migration time.

Our experimental results (Table 4.4) show that for the Google and TwoSigma traces, the impact
of increased instance spin-up time vs increased task migration time on job latency approximately
balance out.

4.4 Related work

Private cluster schedulers. Private clusters generally have a fixed set of machine composition,
with whatever hardware heterogeneity was present at deployment time. Existing state-of-the-art
schedulers [37, 54, 60, 72, 78, 80, 101] frequently optimize scheduling decisions based on the
existing set of instances. But, public clouds offer instances of many types and sizes, allowing a
virtual cluster to vary over time not only in size but in composition, so the best-match instance
type for a given job can usually be acquired when desired. Naturally, different instance types have
different rental prices, which must be considered. Further complicating decision-making is the
fact that rental costs for particular instance types can vary over time, most notably in the AWS
spot markets. Such differences require VC schedulers to focus on different issues than traditional
cluster schedulers.
Task-per-instance virtual cluster schedulers. Most previous work on scheduling jobs on public
cloud resources maps each task of each job to an instance, acquired only for the duration of
that task. This approach works both for cloud bursting configurations [28, 45, 64], in which
excess load from a private cluster is offloaded onto public cloud resources, and full virtual cluster
configurations.
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Various policy enhancements have been explored for task-per-instance schedulers. Mao et
al. [92, 94] proposed framework-aware VC scheduling techniques that balance job deadlines and
budget constraints. Niu et al. [100] discuss scheduling heuristics to address AWS’s previous
hour-based billing model by reusing instances for new tasks with time remaining in a paid-for
hour. HotSpot [117] addresses (exploits) the dynamic nature of spot markets and the diversity of
instance types, always allocating the cheapest instance on which a new task will fit and migrating
tasks from more expensive instances to cheaper instances as spot market prices fluctuate.
Packing VC schedulers. Compared to the common approach of assigning a single-task-per-
instance in existing VC scheduling literature, schedulers that pack tasks (from the same or different
jobs) onto instances may reduce overall cost, as they reduce the risk of lower utilization due to
imperfect fit.

One reasonable approach [12] is to pack containerized tasks on an elastic VC using CSP-
offered services like those discussed above. Specifically, one can use server-based container
services (e.g., ECS) to place containerized tasks on to (spot) instances, while maintaining the pool
of running instances with an instance management frameworks (e.g., SpotFleet). This combination
essentially results in a packing VC scheduler, and it is one of the approaches to which we compare
Stratus in §4.3.

SuperCloud is a system that enables application migration across different clouds, and it
includes a subsystem (SuperCloud-Spot) used for acquiring and packing spot instances [74].
SuperCloud-Spot appears to be designed primarily for a fixed set of long-running jobs (e.g.,
services), since methods for on-line packing to address dynamic task arrival/completion and
varied task CPU/memory demands were not discussed. But, it represents an important step toward
effective VC scheduling, and we include it in our evaluations. We also evaluate natural extensions
to it as part of understanding the incremental benefits of Stratus’s individual features.
Energy-conscious scheduling. Energy-conscious schedulers attempt to reduce the energy con-
sumption of a cluster by actively causing some machines to be idle and powering them down. To
do so, they attempt to pack tasks onto machines as tightly as possible to minimize the number
that must be kept on [25, 26, 87]. This goal draws a parallel to the goal of VC schedulers, whose
primary objective is to minimize the cluster’s bill typically by using less instance-time and packing
instances more efficiently. Acquiring/releasing a VM instance in the cloud is akin to switching
on/off a physical machine.

Although energy-conscious schedulers and VC schedulers share a goal of maximizing utiliza-
tion of active machines, energy-conscious schedulers generally do not address the opportunities
created by instance heterogeneity or price variation aspects of VC scheduling. Strictly focusing
on task packing, however, the closest scheme to Stratus is a scheduler proposed by Knauth et
al [81], which packs VMs onto physical machines based on pre-determined runtimes (rental
durations) Unlike that scheduler, Stratus does not have known runtimes, but it does exploit runtime
predictions to pack tasks expected to finish around the same time.

4.5 Summary

The Stratus cluster scheduler exploits cloud properties and runtime estimates to reduce the dollar
cost of cluster jobs executed on public clouds. By packing jobs that should complete around the
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same time, simultaneously considering possible packings and available instance types/prices, and
judicious use of task migration to clear under-utilized instances, Stratus actively avoids having
leased machines that are not highly utilized. We expect Stratus’s approach to be a core element of
future virtual cluster management for public clouds.
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Chapter 5

Background: Realizing value through
dependency-aware resource management

While users realize more value in a shared data infrastructures through reducing the cost of running
their applications, infrastructure operators increase the value-realized (e.g., profit margins) of
their clusters by lowering infrastructure management costs while satisfying the demands of their
customers.

Within cluster scheduling and resource management, one area lacking study is how data
analytics jobs can inter-depend on one another. Indeed, inter-job dependencies pervade shared
data analytics infrastructures, as jobs read output files written by previous jobs, yet are often
invisible to current cluster resource management frameworks. Jobs are submitted one-by-one,
without indicating dependencies, and the resource manager considers them independently based
on priority, fairness, etc.

This chapter provides background for our work in realizing value for operators of shared data
infrastructures by exploiting properties of inter-job dependencies to help cluster operators capture
more user value without increasing operating costs and infrastructure capacity.

5.1 Cosmos and Azure

Overview. Cosmos is one of the largest big data analytics infrastructures in the world. Deployed
internally within Microsoft, it is made up of multiple clusters, each with 50k+ nodes [38]. Within
Cosmos, more than 80% of infrastructure capacity is dedicated to SCOPE jobs [30, 38], which
are batch data analytics jobs similar in nature to Apache Spark [134] and MapReduce [41]. These
jobs are scalable, fault-tolerant, and run for a finite amount of time. Our work primarily focuses
on SCOPE jobs and inter-job dependencies between them.
Azure Data Lake Storage (ADLS) and operations. SCOPE jobs submitted to a Cosmos cluster
read input from and write output to a distributed file store known as Azure Data Lake Storage,
orADLS. A user can also access ADLS through a front-end service to upload or download files
directly. We call actions performed on files in ADLS, either by SCOPE jobs or through the
front-end, operations.
Continuous logging. Cosmos continuously tracks and logs data provenance and job telemetry
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(e.g., compute-hours, submission/completion time, and job structure metadata) into external
services: ProvRepo stores data provenance and and JobRepo stores job telemetry. Our analyses
and Owl use these logs to figure out inter-job dependencies.
Job template vs job. A job template [77, 78] is a program to be executed (one or multiple times)
in Cosmos, while a job is an actual execution of a job template. Each submission of a job template
results in a job.
SCOPE job submission patterns. Common patterns used to submit SCOPE jobs within Microsoft
include:
(i) Manual submissions: Where a job is manually submitted.
(ii) Workflow managers: Workflow managers allow users to automate SCOPE job submissions
using workflows. Workflows consist of inter-dependent jobs that often map to a business task,
and can be triggered periodically or conditionally. Within Microsoft, there are at least five major
production workflow managers, each with thousands of users.
(iii)Custom shell scripts: Scripts can be set up to perform automated job submissions for users.
This method is more flexible, but requires specialized management.
Recurring and periodic jobs. As noted in prior work [78], Cosmos workload is composed
largely (> 60%) of recurring jobs, where recurring jobs are jobs whose templates are submitted
many times over time, often to analyze freshly available data. A recurring job can most easily be
understood in the context of periodic jobs, which are recurring jobs that are submitted “on the
clock” in a fixed cadence.

An example of a periodic job would be a job submitted daily that analyze, for example,
trending search engine terms of the past day: the script used to analyze trends is the same in
each daily submission, but the results differ based on the latest available data. Note that while all
periodic jobs are recurring, not all recurring jobs are periodic.
Diurnality. Cosmos’s workload also exhibit diurnal behavior, with high resource usage peaks and
low usage troughs. This behavior allows significant opportunity to move (load-shift) workloads
off-peak and reduce the number of reserved resources required to complete the workload.
Azure VM. Azure VM is Microsoft’s public IaaS (infrastructure-as-a-service) offering, where
customers can rent virtual machines (VMs). VMs can be rented under reserved contracts, where
customers will reserve VM capacity for long periods of time (in years) [2] and will be billed
whether customers use the resource or not, or under pay-as-you go contracts, where customers can
rent VMs for however long they choose, but are more expensive compared to VMs rented under
reserved contracts. In addition to regular VMs, Azure VM and other IaaS providers often sell
excess capacity in the form of preemptible, transient VMs, such as Spot [3] and Harvest VMs [23].
These VMs are often intermittently available, and offered at a steep discount (up to 90% off), with
the proviso that they can be reclaimed by the IaaS provider with little or no warning.

5.2 Hidden inter-job dependencies in Cosmos

This section describes and analyzes hidden inter-job dependencies in a large production data lake
(Cosmos), highlighting observations that affect resource scheduling decisions and opportunities.
It provides an overview of Cosmos and inter-job dependencies, introduces terminology used
through the rest of the chapter, and quantifies the prevalence and characteristics of hidden inter-job
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dependencies.

5.2.1 Inter-job dependencies
How are inter-job dependencies formed? We say that a job A depends on a job B if A consumes
any of B’s output as input. As a concrete example of a recurring cross-organization inter-job
dependency, periodic jobs deployed by the data compliance team process ADLS access logs,
which are generated hourly by the ADLS team, to detect data compliance issues. There are many
ways inter-job dependencies can form, and while some inter-job dependencies form through
careful negotiation between users/organizations, most are formed organically, such as via:
(i) Data discovery through data catalogs: A user finds an interesting dataset while browsing
through Microsoft’s internal data catalog, and sets up a job to analyze the dataset.
(ii) Script inheritance: A user wanting to submit a SCOPE job to analyze a popular dataset often
starts with a script written and shared by others, that contains logic to extract the dataset. The
new script, while containing custom logic, often retains parts of the original script (e.g., priority
settings).
(iii) Logically related intra-workflow jobs: Workflows, which can consist of multiple inter-
connected jobs, are often constructed to improve job modularity and manageability. Each run of a
workflow potentially creates many inter-job dependencies, as jobs within a workflow are inter-
dependent. Note that, although a workflow manager may know about these inter-job dependencies,
there is no interface for a workflow manager to express them to Cosmos.
Characteristics of jobs and dependencies. Our analyses uncovered a few major types of
dependency and job characteristics based on job submission patterns (Table 5.1). The three most
important job and inter-job dependency characteristics for our purposes are recurring, ad-hoc,
and hard.
Challenges. Among the many ways in which inter-job dependencies can form and evolve, most
promote loosely maintained (or non-existent) contracts between inter-dependent jobs in favor
of developer convenience. This leads to an environment in which most users know little about
upstream jobs that produce their input datasets, and even less about downstream jobs that depend
on the data their jobs produce. These sub-optimal inter-job dependency configurations are often
only exposed as a result of capacity impairment, unexpected job failures, or data/job audits.
Indeed, inter-job dependencies are hidden through the availability of the many disaggregated
solutions to manage and submit jobs and workflows, prompting us to develop Owl to uncover
these dependencies.

5.2.2 Observations on inter-job dependencies
This section motivates our work on exploiting inter-job dependencies by describing consequential
empirical observations about our inter-job dependency data, observed over three months in a
single Cosmos cluster.
Observation 1 (Recurring jobs & dependencies): Most jobs and dependencies are recurring.
Recurring jobs make up 68% of all submitted jobs (the other 32% of jobs are ad-hoc), while
recurring dependencies make up 79% of all dependencies (the other 21% of dependencies are
ad-hoc). Recurring-ness of jobs and dependencies suggest predictability
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Characteristic Description Heuristic
Recurring Recurring jobs are jobs whose tem-

plate is submitted many times over
time, often to analyze fresh data. Re-
curring dependencies are dependen-
cies occurring between jobs of two
recurringly-submitted job templates.

Borrowing from Morpheus [78], jobs are identified
as recurring if (a) jobs of a template are submitted at
least three times over a period of three months, with
at least one submission each month, (b) templatized
job names are an exact match, and (c) source-code
signatures are an approximate match. Dependencies
are identified as recurring if both the upstream and the
downstream jobs are recurring.

Ad-hoc Ad-hoc jobs/dependencies are those
not recurring.

Ad-hoc jobs/dependencies are those not identified as
recurring.

Periodic jobs Periodic jobs are recurring jobs that
are submitted “on-the-clock” at a fixed
cadence (e.g., submitted every hour at
the start of the hour).

Jobs of a template are identified as periodic if they are
recurring and if job submissions have near-constant
inter-arrival time. To determine if inter-arrival times
are near-constant, we use the coefficient of variation
(CV). Jobs with small CV in their inter-arrival times
are identified as periodic, while others are aperiodic.

Polling Jobs are polling if they scan and wait
for their inputs to become available
before their submission. Input depen-
dencies of polling jobs are similarly
polling.

Jobs are identified as polling if they (a) are not identi-
fied as periodic, indicating that they are not submitted
on a clock, (b) never fail due to missing files from
their recurring upstream jobs, and if (c) they are sub-
mitted within 15 minutes of the completion of their
latest-completing dependent job. Input dependencies
of a polling job are polling.

Hard
dependencies

Dependencies are hard if the down-
stream job requires the output(s) of the
upstream job to be able to run success-
fully. If the input(s) of the downstream
job is not ready by the time of its sub-
mission, the downstream job fails with
a missing file exception.

Dependencies are identified as hard if they are
(a) ad-hoc, (b) recurring and > 95% of jobs of the
same template consume the output of only one job of
the same upstream job template, or (c) if the down-
stream job consumes the output of the same number
of upstream jobs of the same job template all the time,
indicating that they expect the same number of inputs
from the same number of jobs from the upstream tem-
plate.

Table 5.1: Summary of and heuristics to identify and characterize job and dependency types.

Observation 2 (Priority mis-configurations): In Cosmos, jobs are assigned resources in declin-
ing priority order, where the priority of a job is assigned by the job’s submitter. Here, we find that
potential priority mis-configurations are frequent within Cosmos: jobs of 21% of job templates
have the chance to be systematically priority-inverted—i.e., recurring jobs consuming their output
have a higher priority. In addition, up to 33% of ad-hoc jobs are assigned higher priority than the
average recurring job submitted within the same hierarchical queue,1 where recurring jobs are
often production jobs [78].
Observation 3 (Uncoordinated jobs): Many jobs are submitted without explicit coordination
with respect to the completion of their upstream jobs—i.e., these jobs do not wait for their input
to become available nor are tolerant to missing input, yet they are submitted blind with respect to
the availability of their inputs. Such jobs make up 34% of recurring jobs, and can be susceptible

1Hierarchical queues designate resource shares of an organization in clusters at Microsoft. Priorities are only
comparable between jobs in the same queue.
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to failure due to missing input from an upstream job not completing in time.
Observation 4 (Cross-org jobs & dependencies): Cross-org jobs and dependencies are common
at Microsoft. Up to 95% of organizations have cross-org dependencies. Of all dependencies, 33%
are cross-org, and 17% of template dependencies are cross-org, where a template dependency is a
dependency between recurring jobs of two job templates. Furthermore, 28% of jobs and 23% of
recurring jobs are involved in cross-org dependencies. Cross-org dependencies can be harder to
manage because they require coordination between jobs across hierarchical queues and between
job owners across different organizations.
Observation 5 (Jobs are highly inter-connected): Modeling jobs and their dependencies as a
directed acyclic graph (DAG), where inter-job dependencies represent edges, we find that more
than 50% of jobs are inter-connected in a single weakly connected component (CC), and CCs
of sizes ≥ 10 cover more than 80% of all jobs. We also find that the larger a CC, the more
bottom-heavy it is—the failure of certain jobs in such large CCs can cause significant amounts of
cascading failure downstream.
Discussion. We have seen failure due to lacking input and priority inversions happen during
manual inspection of job logs and dependency graphs, but we can not provide counts. We have also
seen that: (1) users can and do fix their jobs, sometimes at the cost of sub-optimal performance
and results, to work around issues, such as by by consuming stale data; and (2) some of these
problematic inter-job dependencies can be masked with sufficiently available resources. A better
understanding of inter-job dependencies can help us uncover problematic mis-configurations
before they show up.
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Chapter 6

Unearthing inter-job dependencies for
better cluster scheduling

This chapter describes our work on Wing [35] and Owl [34], tools that can help both users and
operators increase their value attained through understanding input and output relationships of
their jobs.

Wing is an inter-job dependency profiler that uncovers and analyzes hidden inter-job depen-
dencies, using historical data provenance and job logs. Our work shows that by relying completely
on Wing for guidance, an batch analytics job scheduler can achieve nearly 100% of user value
at constrained cluster capacities, almost 2× that achieved by using the default user-provided job
priorities.

On the other hand, Owl is a user-oriented visualization tool that uses Wing’s analyses to help
users understand how their jobs depend on other jobs, and who is consuming the output of their
jobs, which in turn allows users to better determine the importance and urgency of their jobs.

Today, data lakes have become core elements of modern data-driven enterprises, providing
required data storage and analysis infrastructure (see Fig. 6.1). Data lakes enhance data processing
via a combination of two critical properties: (i) a highly consolidated, multi-tenant infrastructure
that enables multiple teams of data scientists and engineers to share resources rather than each
having their own, and (ii) low data access barriers that allow easy data sharing between users
and various types of data analytics applications. Combined, these properties increase data re-
use [27, 65] and reduce overall computational resource-hours consumed [75, 76].

This same data and resource sharing creates a new challenge: hidden inter-job dependencies.
We say that Job 2 depends on Job 1 if Job 2 takes as input any output file generated and stored
into the shared distributed file system by Job 1.1 For example, in Fig. 6.1, Job 3 (from Org 3)
depends on Job 2, which in turn depends on Job 1. We refer to these as hidden dependencies,
to contrast them with explicit computation DAGs managed by schedulers within workflow
managers [73, 97, 98], because there is no indication of such dependencies indicated in the job
submissions—the dependencies are not expressed to the cluster scheduler.

The advent of GDPR [128] forced large companies such as Microsoft to invest in infras-

1Our nomenclature and analyses focus on fundamental dataflow dependencies among batch analytics jobs, not
distributed stream processing or artificial inter-relationships caused by resource contention.
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Figure 6.1: Data lake overview. Different jobs submitted by different organizations share the same
compute infrastructure and read (R) and write (W) to the same storage system, thereby creating inter-job
dependencies as jobs consume the output of other jobs. e.g., Job 2 (from Org 2) reads a file written by
Job 1, so Job 2 depends on Job 1.

tructures to track data provenance and data movement both within the data lake and to external
components. This created an unprecedented opportunity to uncover and exploit these inter-job
dependencies for scheduling: We analyze data extracted from petabytes of job and data prove-
nance logs for 90 days of a 50k+ server cluster (part of Microsoft’s Cosmos data lake [30, 38])
shared by over 1300 users from more than 150 internal organizations. In total, our analysis covers
over 4 million submitted jobs and 16 million inter-job dependencies. We find that almost 80% of
submitted jobs depend on output generated by at least one other job. Indicating the breadth of
sharing, many dependencies are cross-organization, with 20% of jobs depending on jobs submitted
by another organization.

Despite so much inter-job dependence, systems provide little support for addressing associated
challenges. For example, in Cosmos, different users and organizations make their own decisions
regarding when to submit jobs and how to set job priorities. Ideally, all co-dependent organizations
and users would set up clear Service Level Agreements among themselves to ensure timely arrival
of input data for business-critical analyses. Yet, we see signs of insufficient coordination to ensure
that jobs’ outputs are produced in time for consumption by dependent jobs. For example, 13%
of submitted jobs depend on output files from jobs that execute at a lower priority, which can
result in priority inversion since job schedulers are not dependency-aware. More broadly, 34%
of recurring jobs are submitted without checking if inputs they depend on are available, failing
immediately if they are not.

The Wing dependency profiler efficiently processes prior job and provenance data to predict
the impact of each new job on future jobs and user downloads. Although it is inherently difficult
to know what future jobs will depend on the output generated by a current job, Wing finds success
by focusing on recurrence. Previous workload studies have shown that > 60% of jobs in data
analytics environments are recurrent and suggest that dependencies of these jobs can similarly
follow certain patterns [78, 122]. Our analyses in Cosmos confirm that inter-job dependencies
are recurrent (79% of all inter-job dependencies are recurrent), with jobs of the same template
exhibiting recurring input consumption patterns. As such, Wing uses historically recurring
dependencies to (i) analyze and predict relationships between common, dependent recurring jobs,
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and (ii) guide a cluster scheduler to value jobs in a way that accounts for hidden dependencies.
To explore Wing’s efficacy, we pair Wing with stock YARN scheduling (Wing-Agg), replacing

user-provided priorities with Wing-guided priorities. Specifically, we use number of downloads
attained associated with a job’s outputs as an approximation for job value,2 and assign priorities
to jobs based on value efficiency [32, 71, 104] (job-value divided by resource-time-used). We use
trace-driven simulation to evaluate Wing-Agg, compared to using the user-provided priorities (as
used in Cosmos), when the goal is to maximize the overall value attained. We find that Wing-
guided scheduling achieves up to 66% more value than the Cosmos default, under cluster capacity
crunch. Further, when organizational cluster resource boundaries are removed, a Wing-guided
scheduler can achieve nearly 100% of value at constrained cluster capacities, almost 2× the value
achieved by scheduling based on user-provided job priorities.
Contributions. This chapter makes four primary contributions: (i) It presents the first detailed
public study of hidden inter-job dependencies in a large-scale data analytics cluster, revealing
important problems and opportunities; (ii) it describes a novel system for extracting historical
inter-job dependencies from provenance data, at scale, and predicting the impact of a newly–
submitted job on future jobs and users; (iii) it shows that use of such predictions can allow a
modern scheduler, with minimal changes, to better serve the overall workload by prioritizing the
highest-impact jobs; and finally (iv) it demonstrates how Wing’s analyses can be surfaced to users
via Owl, a tool that can help users identify critical job dependencies and visualize job impact.

6.1 Inter-job dependency predictability
Inter-job dependencies show potential in guiding scheduling; but it is unrealistic to expect job
submitters to provide all inter-job dependencies up-front due to the fragmented nature of inter-
dependency knowledge (§5.2.1). While inter-job dependency recurrence shows promise, for Wing
to effectively guide schedulers with inter-job dependencies, recurring inter-job dependencies also
need to be predictable—i.e., it is important that past dependencies tell us something about the
future. In this section, we use a simple model to predict future occurrences of recurring inter-job
dependencies, and show that inter-job dependencies can be predictable.

6.1.1 Prediction model
Given a specific point in time where a job ju of template Ju (ju ∈ Ju, where the symbol “∈” is used
as shorthand for “of instance”) has arrived, for each recurring job template Jd that depends on the
output of template Ju in a recurring fashion, our prediction model has two targets: (T1) whether
or not a recurring job ∈ Jd will arrive and depend on ju in the future and (T2) when the first
instance of such a job will arrive.
Model for (T1): Will a downstream recurring job arrive? For (T1), our model uses a
configurable prediction threshold tr% ranging from 0 to 100 to predict whether or not a job ∈ Jd
will arrive: If ≥ tr% of prior jobs ∈ Ju have their outputs consumed by a job ∈ Jd, then the
predictor predicts true; otherwise it predicts false.

2While job output download-counts are imperfect as ground-truth for job value, a limited check (§6.2.3) against
known important levels for six business-critical jobs indicates that it at least sometimes behaves reasonably.
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Model for (T2): When will a downstream job arrive? For (T2), our model aggregates previously
observed recurring dependencies where the upstream job ∈ Ju and the downstream job ∈ Jd, and
computes the median elapsed time from the submission of the upstream job to the submission of
the first dependent downstream job.

6.1.2 Predictability evaluation
Dependencies change slowly over time. Dependency patterns of recurring jobs change slowly
over time, and making predictions based on inter-job dependencies over longer periods of time
presents challenges. For example, in (T1), using a month of inter-job dependency data to train
our model to predict the arrival of dependent jobs occurring in the next month only allows us
to capture at most 77% of upcoming jobs. Regularly training our model on a week of data to
predict for the next week works comparatively well, because (1) it allows us to capture up to 95%
of upcoming jobs and (2) it allows us to characterize the dependencies of 89% of job templates
(covering 97% of all jobs), since jobs of most templates are submitted with an inter-arrival time of
less than a week (with daily submissions being the most common).
(T1) metrics and model performance. We evaluate the prediction quality of our model on (T1)
based on precision3 and recall.4 Fig. 6.2 examines the tradeoff between precision and recall for
our model using various settings for the prediction threshold tr. As the model becomes more
selective with respect to which downstream jobs will arrive (tr → 100%), it retains less relevant
dependencies in total, but the dependent recurring jobs it predicts to arrive mostly do show up.
The reverse is true as the model becomes less selective (tr → 0%).

We discuss the evaluation of our model based on a threshold that balances precision and recall.
A common way to identify such a threhold is to select the threshold that maximizes precision ∗
recall. We find that tr = 20% yields the greatest precision ∗ recall, and therefore evaluate our
model by setting tr = 20%. The threshold used in an online prediction service can similarly be
tuned from week-to-week based on observed precision and recall, though the specific target to
optimize depends on the penalties associated with making mistakes in recall or precision.
(T2) metrics and model performance. To evaluate the performance of our model on predicting
when a downstream job jd ∈ Jd will arrive at the arrival time of an upstream job ju, jd must
satisfy two conditions: our model must predict jd to arrive based on jobs that have already arrived
during a point in time in the execution trace and it must actually arrive. Our evaluation focuses on
jobs that satisfy both above conditions.

To evaluate the performance of our model for (T2), we use the Root Mean Squared Error
(RMSE) and the Median Absolute Error (MAE) metrics to measure prediction error in absolute
time units. RMSE measures error by computing the root of the average of squares of errors,
while MAE measures error by computing the median of absolute error = |forecast − actual|,
over all predictions. To measure relative error, we use the percentage error metric: it computes
(forecast− actual)/actual for each prediction.

3Precision is defined as the number of true positives (TPs) divided by the sum of TPs and false positives. Precision
can be thought of as the percentage of positive predictions our model makes (i.e., a downstream job will arrive) that
are truly relevant (i.e., such a downstream job actually arrives).

4Recall is defined as TPs divided by the sum of TPs and false negatives. Recall can be thought of as the percentage
of relevant results that our model is able to correctly predict.
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Figure 6.2: (T1) precision-recall tradeoff. Predictor shows the precision-recall tradeoff our dependency-
based job arrival predictor makes. Each point on the curve specifies a different setting for the prediction
threshold (tr). As tr → 100% (more selective), a larger fraction of predictions are relevant (more precision),
but less relevant jobs are captured in total (less recall).

While we discuss the evaluation of our model on (T2) setting tr = 20%, we find that
confidence in job arrival prediction only slightly affects time-to-dependency prediction quality.
This does not mean that the setting of tr is inconsequential, as tr affects the predictions of whether
or not a job will arrive. Here, we evaluate the time-to-dependency predictions only for jobs that
are both predicted to arrive and actually arrive.

We observe the RMSE and MAE of our model to be 2.5 hours and 22 minutes, respectively:
MAE is smaller, as RMSE can be skewed by large mis-predictions at the tail. While our absolute
errors can be improved using more sophisticated techniques, we find that our model predictions
are reasonable for most jobs in our workload in terms of relative error, as shown in Fig. 6.3 in the
form of a cumulative distribution function (CDF), for different settings of tr: the arrival of 50%
of arrived jobs ∈ Jd are predicted within ±20% of its actual arrival. But, there is also a non-trivial
number of significant over-estimates: the arrival of 7% of arrived jobs ∈ Jd are over-estimated
by 2× or more—i.e., the actual jobs arrive more than 2× earlier than predicted. While this may
not explain all mis-estimations, we have found that aperiodic recurring jobs (such as those that
are manually triggered) and jobs that depend on the outputs of multiple jobs are prone to greater
mis-estimates (our simple model presented here only tries to predict the arrival of a future job
based on one of its directly upstream recurring jobs).

6.2 The Wing dependency profiler

This section describes Wing, an end-to-end dependency profiler meant to be run intermittently
(e.g., weekly) that uncovers historical, hidden inter-job dependencies from data provenance logs.
It performs a series of analyses using these inter-job dependencies in-tandem with historical
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Figure 6.3: (T2) Time-to-dependency (TTD) prediction. This figure shows our predictor’s performance
on predicting TTD from the submission time of the upstream job, at different settings of tr in a CDF. f is
the forecasted TTD, and a is the actual TTD. While being more precise (tr → 100) does not yield better
TTD predictions, it does affect predictions on whether or not a job will arrive.

job telemetry, yielding characterizations of jobs and inter-job dependencies such as signs of
misconfigured priorities between recurringly-dependent jobs (§5.2.2), predictability of upcoming
jobs (§6.1), and estimates of recurring jobs’ aggregate value considering their impact on down-
stream jobs that rely on their outputs, directly or indirectly (§6.2.3). These characterizations are
ultimately used to inform better scheduling decisions, where its benefits are explored in more
detail in §6.5.

6.2.1 Architecture

First, we introduce related systems and data sources upon which Wing depends, and provide an
overview of Wing’s architecture, shown in Fig. 6.4.
Input data sources. Wing relies on the following data sources, from which we derive job
dependencies and insights thereof: (i) JobRepo preserves job telemetry (e.g., compute-hours,
submission/completion time, and job structure metadata) for submitted jobs. Wing uses JobRepo
to derive recurring jobs and their historic statistics. (ii) ProvRepo tracks data provenance across
Microsoft to support auditing and compliance applications [128]. Specifically, it stores data
provenance across systems deployed within Microsoft, including but not limited to Cosmos.
ProvRepo is used by Wing to uncover historic inter-job dependencies, and from there, infer
recurring dependencies between recurring jobs.
Analysis pipeline. Wing’s data analysis pipeline, primarily composed of a workflow of inter-
dependent SCOPE jobs, is managed by a workflow manager and is periodically executed in
Cosmos. The pipeline reads data from JobRepo and ProvRepo and writes its output to be
consumed by WingStore.
WingStore. The WingStore is a service that hosts the resulting analyses of Wing’s analysis
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pipeline, periodically renewed each time a new instance of the pipeline completes. Given a
historical job or the identifier of a recurring job, one can look up relevant historical job and
inter-job dependency data: Such historical job data include, but are not limited to, distributions
of job runtime and compute-time used. Historical inter-job data include distributions of job
fan-in/fan-out, recurring inter-job dependencies, and distributions of number of downstream jobs.
The WingStore is the interface between Wing’s analysis and a Wing-guided resource manager.

6.2.2 The Wing pipeline: Single-hop analysis
Wing considers both single-hop and multi-hop dependencies in its analyses. The former occur
when jobs directly consume the output(s) of another job. The latter are indirect dependencies
between jobs that are connected by means of intermediate jobs. Here, we focus on the derivation of
single-hop dependencies, which multi-hop dependencies are built upon, from historical provenance
data stored in ProvRepo.
Single-hop dependency derivation. To derive single-hop dependencies from provenance data
in ProvRepo (stored roughly in the form of <input, operation, output>, but with much
more detailed context), we perform a self-join on the ProvRepo dataset with the condition of
p1.input = p2.output. A näive self-join across multiple months of data is extremely
compute intensive and can yield incorrect results, as a single file can be written multiple times
by different jobs. To reduce join complexity and ensure correctness, we apply the following
additional rules on the join:
(1) R/W correctness: The read must occur after the write. i.e., p1.operation must occur after
p2.operation.
(2) Last-writer wins: If multiple writes occur on a single file, the read only depends on the latest
write prior to the read.
(3) Time windowing: The time between the read and the write operations are at most T days,
where we set T = 30.5

Time windowing can reduce join complexity and allow our analyses to account for inter-job
dependencies more fairly—if time windows are not applied over an observation period, operations
issued earlier necessarily have a higher chance to be depended-upon. In other words, for each
operation between days 31–606 in our dataset, time windows give them equal opportunity (in
wall-clock time) to be depended-upon by directly-dependent operations.
Heuristics to identify recurring jobs & dependencies. A key to the analyses that we perform
is the identification of recurring jobs, for which we employ the time-tested heuristic proposed
in Morpheus [78] and applied in multiple production environments [78, 122]. Through the
identification of recurring jobs and uncovered single-hop dependencies, the Wing pipeline further
derives recurring dependencies and uncovers dependency characteristics of jobs using similar
heuristics, described in Table 5.1. While ideally, we would like the full semantics of how inter-job
dependencies are formed, due to the availability of the many different ways to submit a job (§5.1),

5In retrospect, we should have set T = 31 to capture all monthly cycles, but our results based on T = 30 remain
valid because (1) 98% of dependencies occur within a week, and (2) jobs of 89% of templates (97% of all jobs) have
mean inter-arrival times of less than a week.

6Operations between days 31–60 are analyzed because we observe fully over time windows of 30 days both
operations they depend on (days 1–30) and those that depend on them (days 61-90).
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Figure 6.4: Wing architecture. A workflow manager periodically submits Wing’s pipeline to Cosmos.
Upon pipeline completion, results of its analyses are loaded in to WingStore, which informs Wing-guided
schedulers (§6.4.2) with job and dependency characteristics.

our usage of heuristics is necessary. Sampling 25 jobs for manual verification, we confirm that
our heuristics categorize jobs and dependencies correctly for 24 of the jobs.

6.2.3 Motivating multi-hop analysis: Job
valuation using aggregate downloads

Companies can benefit more from their infrastructure investment through effective scheduling
that prioritizes the completion of the most valuable jobs. But, often times, inter-job dependencies
have not been considered when evaluating the importance of jobs—e.g., a job with high value can
potentially depend on jobs with low value. In these cases, inter-job dependency awareness is key
to ensure that upstream jobs do not disrupt high-value downstream jobs. Here, we look at why
inter-job dependency analyses beyond direct dependencies (i.e., multi-hop analyses) can inform
better, dependency-aware valuation of jobs to improve scheduling, and explore using the number
of downloads attained associated with the outputs of a completed job as a proxy-metric for job
value.
Priority assignments. To prioritize jobs today, schedulers in most production data analytics
environments, including in Cosmos, use priority assignments to determine a job’s order in its
claim to resources. In this context, the notion of job value is often translated into a priority
assignment on the job—the greater a job’s value, the higher its priority. However, priorities in
clusters are difficult to set correctly (Observation 2), and even at Microsoft, whose multi-billion
dollar clusters are carefully provisioned and whose user-base is highly skilled, incidents triggered
by late completion of hand-picked, closely monitored, and highly valued production jobs still
occur due to mis-configured priorities.
Multi-hop value impact. The completion of a job can often be associated with some measurement
of monetary value to a company. For example, jobs computing Bing’s search indices directly
impact the revenue of Microsoft. We term the direct value associated with the completion of a
job its job-local value. However, the delay or failure of a job may not only affect its users and
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consumers of its output: through analyses of Cosmos’s job DAG (Observations 3 and 5), we find
that the delay or failure of certain jobs impact a lot more jobs and users than others. Hitches in the
execution of these jobs are likely to cause much more financial and operational damage to users
and organizations within the company due to the ripple effects they can create downstream, yet
their impact might not always be obvious. While prior work [48, 78] suggest that finishing jobs
prior to the arrival of their first directly-dependent job is important, quantifying the aggregate
value of a job necessitates inter-job dependency analyses extending beyond a single hop (i.e.,
multi-hop analyses). Fig. 6.5 showcases a toy example that computes such an aggregate value for
the root job of a dependency tree.
Approximating value impact with agg. downloads. Although determining the true dollar-
value of jobs is difficult, we find it promising to evaluate the importance of jobs based on their
historical aggregate user downloads, which measures hypothetically if a job fails, how many
download operations it will affect (directly or indirectly) in total. In developing Wing, we
have also experimented with several alternative metrics e.g., sum of cpu-hours and number of
downstream jobs. Number of downloads was preferred by our resource management team because
file downloads (1) are the most direct way users interact with a job’s output; (2) can be easily
interpreted and understood; and (3) because file downloads can be used to quantify how soon
the output(s) of a job are used upon its completion. The properties of file downloads allow
aggregate downloads counts to provide a proxy-measure to how the delayed or failed outputs
of jobs can impact users in and out of Microsoft. Aggregate download counts also implicitly
capture the number of downstream jobs that can be impacted by the failure of a job through their
associated output downloads. While further work is required to confirm that aggregate download
counts represents job value and to explore how it should be combined with other signals (e.g.,
user-provided priorities), we use it in this paper as our approximation of value.
Sanity-checking aggregate downloads as job value. We conducted a sanity check, using
aggregate download counts for job valuation to see how it matches up with pre-existing notions of
job importance. To that end, we obtained a list of six recurring job templates hand-curated by
the Cosmos resource management team at Microsoft, each vetted to be significantly important to
Microsoft’s operation. We then look at Wing’s ranks of those jobs.

Our results show that our valuation scheme mostly holds up for the most important jobs: We
find that jobs of five of the six templates are consistently ranked by our scheme to be among the
top 4% of all jobs submitted, with jobs of one template still ranking in the top 11%. We also
measure relative rankings by user-specified priority and by our heuristic among jobs submitted
to the same organizational queue, since priorities are only relevant when compared to other jobs
sharing the same queue. For four out of the six hand-curated job templates, Our heuristic produces
organizationally-relative rankings within 5% of priority assignment rankings. For one of the six
job templates, our valuation scheme produces a ranking lower than that produced by priority
assignments by up to 11%. For the last of the six job templates, however, we produce a ranking
higher than that produced by priority assignments by 50%. This is surprising because we expected
priority assignments for these six job templates, which are all verified to be highly important,
to be extremely well-tuned, with highly-ranked priorities assigned to jobs of all six templates.
Yet, jobs of the last template are only ranked at the 49th percentile of all submitted jobs within
its queue by priority assignment—this mis-configuration may lead to significant issues once the
queue becomes more heavily-loaded.
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Figure 6.5: Value aggregation and value decay. In this toy example, jobs A–E are submitted at strict,
absolute times, where the x-axis denotes time relative to the submission of job A. B and C have hard
dependencies on A, and D and E have hard dependencies on C. The aggregate value of A is the sum of the
aggregate values of B and C and A’s own job-local value. With Wing, we can model how the aggregate
value of A decays as it fails to complete by the time its downstream jobs arrive, losing the value of B at the
time of B’s submission, and collectively losing the values of C, D, and E at the time of C’s submission (D
and E depend indirectly on A through C, so if C fails, D and E will also fail). In this example, A retains
its job-local value until the end.
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Future work: Further validating agg. downloads as value. We acknowledge that accurate
job valuation is a difficult problem that requires further study, and that different companies can
have different notions of job value. While further efforts are ongoing at Microsoft to validate
the efficacy of our job valuation scheme (e.g., conducting surveys of Cosmos users), Cosmos’s
resource management team has noted that our valuation scheme is better than any of their
existing heuristics used for job valuation, and are considering adopting it to aid in rolling out job
upgrades and using it as a weighting function to report certain cluster performance indicators (e.g.,
reliability).

6.2.4 The Wing pipeline: Multi-hop analyses
Wing provides a flexible iterative solution implemented on top of SCOPE for performing down-
stream multi-hop analyses, in which for a given job, we analyze properties of its directly and
indirectly-dependent jobs. Provided a set of single-hop inter-job dependencies, our framework
allows the computation of both the transitive closure and aggregate statistics of all sub-DAGs
rooted at each job in an inter-job dependency DAG (defined in Observation 5). Such multi-hop
analyses are important to effectively guide scheduling decisions, as it can compactly characterize
each job’s downstream impact: i.e., if a job fails or is delayed, how will its downstream jobs and
users be affected (§6.2.3)? Our framework generalizes the algorithm proposed in Owl [34], which
allows multi-hop dependency analysis to be applied to other applications, e.g., fixing priority
inversions7 for Cosmos jobs.
Algorithm input. Our algorithm input is a single-hop job dependency DAG specified as a
relational table, where the first column (job) holds the dependent job and the second column
(depOn) holds the depended-upon job.
Algorithm output. Our algorithm outputs a relational table describing multi-hop dependencies.
The first column (job) holds the downstream job, the second column (depOn) holds the (po-
tentially multi-hop) upstream job, and the third column (agg) holds Wing-computed weights
aggregated along all paths between the pair of up/downstream jobs.
Aggregation Functions (AFs). Each downstream multi-hop analysis specifies the following
Aggregation Functions (AFs):
• Weight function (wt fn): wt fn takes in a job and its in- (or out-) edges as input, and outputs
a weight wt for each graph edge. This operation is done once to convert the input DAG into an
edge-weighted DAG.
• Edge operation (e op): For two vertices t and v connected by an intermediate vertex u, e op
performs an aggregation of weights between a pair of (potentially auxiliary) in- (t, u) and out-
edges (u, v) of u, constructing a new auxiliary weighted edge connecting t and v. Specifically, it
computes the weight for an auxiliary edge based on new edges explored in each iteration between
two indirectly connected jobs. This operation should be distributive over the p op (defined
following).

7Wing can fix priority inversions by raising the upstream job’s priority before its dependent high-priority job
arrives. Traditional OS methods require both jobs to have arrived at the scheduler, and dependency between the two
jobs is communicated through concurrency data structures (e.g., locks). There is no lock-equivalent in Cosmos’s
scheduler.
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• Path operation (p op): p op aggregates weights on all explored paths between two jobs. While
a unique path cannot be explored multiple times, the algorithm can make multiple traversals and
aggregations between the same pair of up- and downstream jobs if multiple paths between two
jobs exist. This operation should therefore be associative.
• Downstream operation (ds op, optional): The downstream operation is the last step performed,
after our iterative algorithm converges. For a job, it performs an aggregation on all of its
downstream jobs and aggregated path weights.
Algorithm outline. We first preprocess the job dependency DAG with the AF wt fn to generate
the DAG edge weights wt. Then, for each job in parallel, our algorithm traverses the DAG and
computes transitive closures along all paths, maintaining an “aggregated version” of wt using
e op and p op along the way. Our algorithm completes in O(log(diameter)) iterations, where
diameter is the longest path in the DAG. In each iteration, the algorithm maintains a frontier and
a base table, both with the schema (job, depOn, wt). The frontier table records the set of
discovered furthest reachable upstream jobs by job in depOn, while the base table records the
set of all discovered reachable upstream jobs by job in depOn. The wt column of both tables
records the aggregated weights along discovered paths from job to depOn. Each iteration joins
and updates the frontier and base tables, extending the “reach” of each job by a maximum of 2×.
Our algorithm pseudocode is shown in Algorithm 1.

6.2.5 Job value aggregation with Wing

Job value aggregation properties

Fair multi-hop time windowing. Aggregating value directly on even a single-hop time-windowed
job dependency graph has a critical shortcoming: when considering multiple hops, jobs at the
start of the observed trace still hold an advantage over jobs toward the end of the observation
window in terms of opportunities to have their multi-hop downstream dependencies also land in
the observation window. To better illustrate this, suppose we are given a recurring job template X
with multiple jobs in our observation window. While ideally all jobs of X should have similar
amounts of downstream dependencies, jobs of X that occur earlier in the trace are more likely
to have their downstream dependencies also observed in the trace, while later jobs of X in the
trace are more likely to have their downstream dependencies cut off due to the limits of using a
static-length trace. In the limit of using an infinitely long trace, no time windowing is necessary.

A multi-hop time window is therefore needed to further restrict the set of jobs eligible for
value aggregation. Our multi-hop time windowing method works as follows: we first define a
time window size ω smaller than the observation period. For each valid job j in the trace, we
consider its entire set of directly and indirectly dependent jobs that are submitted by up to ω
after its completion time. Here, we define valid jobs as jobs that complete at least ω prior to the
end of the observation period. We set ω to one week for multi-hop dependency analysis, as the
scale of the inter-job dependency graph bottlenecks transitive closure computation as ω increases:
increasing ω exponentially increases the number of multi-hop inter-job dependencies to consider,
as dependencies fan-out further into the future. ω is set to a week here to capture the majority
of recurring dependencies that occur on a sub-weekly cadence (most recurring templates are
submitted with inter-job arrival times of a day or less), while allowing our entire analyses pipeline
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// Helper functions

1 Function preprocess(s hop) is
2 gp by job = job G wts=wt fn(depOn)(s hop);
3 return π job, depOn=wts.depOn, wt=wts.weights(gp by job);
4 end
5 Function extend reach(t1, t2) is
6 e agg = πt1.job, t2.depOn, wt=e op(t1.wt,t2.wt)(

7 t1 ▷◁t1.depOn=t2.job t2);
8 return job, depOn G p op(wt)(e agg);
9 end
// Computation start

Input :s hop // Single-hop dependencies

10 i = 0; // Iteration

11 ftri = preprocess(s hop); // Frontier

12 base = COPY(ftri) ; // Base

// base at the end of iter i covers deps up to 2i hops

13 do
14 i++;
15 base tmp = base − ftri-1;
16 ftri = extend reach(ftri-1, ftri-1);
17 base tmp = extend reach(ftri-1, base tmp) ∪ base;
18 base = job, depOn G wt=p op(wt)base tmp;
19 base = base ∪ ftri;
20 while COUNT(ftri) > 0;
21 return job, depOn G agg=p op(wt)base; // Converged

Algorithm 1: Multi-hop downstream analysis framework. preprocess first assigns
weights to DAG edges with wt fn. In each iteration, it calls extend reach to further explore
the graph from each job in parallel. In extend reach, auxiliary edges with edge weights
specified by e op are created to denote newly discovered indirect dependencies (through the
JOIN, or ▷◁ operator). The auxiliary edges are deduplicated with a GROUP BY (G) operator at
the end of each iteration, yielding edge weights of p op(wt).

to finish in approximately a day.

Value conservation. To conserve the total amount of value in the system, we employ an equal
contribution scheme proposed in Owl [34], where each job contributes value to its directly-
dependent upstream jobs equally, and the aggregate value of a job in this scheme is computed
as the sum of value contributed upstream by all of its downstream jobs plus the value of the job
itself. In this scheme, if a job j depends directly on the output of N jobs, it contributes 1/N of its
value to each of its jobs directly upstream. Each of the N upstream jobs in turn further propagates
j’s (and their own) value upstream in the same fashion; e.g., if each of the N jobs directly depend
on the output of M other jobs, j contributes 1/(N ∗M) of its value to each of the N ∗M jobs
two hops upstream. This yields the following equation, as proposed in Owl [34], for computing
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the aggregate value of a job:

agg val(j) =
∑
d∈Dj

( ∑
p∈P(j,d)

∏
e∈p

we ∗ kd
)
+ kj,

where Dj represents all downstream jobs of j, P(j,d) represents all paths from j to d, we represents
the weight of a directed edge e on the path p, and kd and kj represent the job-local values of d and
j, respectively.

Wing value Aggregation Functions

We implement Owl’s dependency-driven job valuation scheme with Wing’s downstream multi-hop
analysis framework, specifying Aggregate Functions as follows: the weight function wt fn takes
in a job j and its N upstream dependencies as input, and returns 1/N as the weight of each
in-edge; the edge operation e op multiplies the weights of its two operands; the path operation
p op sums the weights of its operands; and finally, for each job j, the downstream operation
ds op sums the job-local downloads of each job downstream of j multiplied by the aggregated
path weights between the downstream job and j. j’s job-local downloads are finally added to the
downloads computed by ds op, yielding j’s aggregate downstream downloads.
Extensibility. While we elect to use downloads as a proxy for job value, Wing’s framework is
flexible enough to consider other metrics: e.g., if one day the dollar value associated with a job
can be known, computing the aggregate downstream dollar value of a job is as easy as replacing a
field in ds op.

Aggregate value exploration and convergence

Using downloads as a proxy-metric for value, Fig. 6.6 shows the fraction of aggregate value
explored in each iteration for each job on average. Considering the aggregate value of jobs with
Wing allows us to uncover 83% of value that would otherwise be hidden if only job-local values
(iteration = 0) were considered. In the context of value-based job scheduling (§6.3), this means
that nearly 6× of value can be hidden from the scheduler if jobs are independently considered. The
figure also shows that 99% of average job aggregate value can be explored within four iterations
of our algorithm.

6.3 Wing-Agg: Inter-job value scheduling

Value scheduling. The objective in value scheduling is to maximize the value achieved from
executing jobs in a workload, where the completion of each job is directly associated with an
amount of job-local value attained. Job-local value can decay over time, and this behavior is often
modeled as a value function (VF) in scheduling literature, which expresses value attained as a
function of job completion time. In value scheduling, it is therefore important to complete jobs in
a timely manner to achieve the most value.
Value and priority. We make a clear distinction between the terms value and priority. In this
paper, we use the term value to describe a measure of “goodness” achieved associated with
the completion of a job. Priority, on the other hand, defines the order in which pending jobs
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Figure 6.6: Aggregate value convergence. This figure shows the fraction of average aggregate job value
uncovered downstream in each iteration of our value aggregation algorithm. 99% of aggregate value is
discovered within four iterations.

are assigned cluster resources: the higher the priority, the earlier a job receives its requested
resources. Most commonly, including currently within Cosmos, the priority of a job is assigned
by its submitter.
Wing-Agg. When inter-job dependencies are present, we find that it is important to consider the
potential value downstream that can be lost if a job fails or is delayed. To consider the effects
of inter-job dependencies, we propose a scheduling policy, Wing-Agg, that incorporates Wing’s
notion of inter-job dependencies into job priorities: the goal of Wing-Agg is to achieve the most
value for a given workload.

As suggested in the introduction, completing the most value-impactful job may not lead to a
scheduler attaining the most value, as some value-impactful jobs can also require large amounts
cluster resource-time to complete. Indeed, prior work [32, 71, 104] has shown that schedulers can
often benefit by considering together how much value a job provides and how much resource-time
a job uses.8

Wing-Agg therefore considers the aggregate value efficiency of jobs, which measures how
much aggregate value per aggregate resource-time a job impacts downstream. Essentially, Wing-
Agg replaces user-assigned priorities with what Wing believes is a job’s aggregate value efficiency.
When a job arrives, Wing-Agg performs a look-up in the WingStore (§6.2.1). If the job is recurring,
Wing-Agg computes the job’s aggregate value efficiency by dividing the job’s median historic
aggregate value by its median historic aggregate compute-time, and assigns the quotient as the
job’s priority. If the job is ad-hoc, Wing-Agg estimates the job’s aggregate value efficiency based
on previous ad-hoc jobs that the same user has submitted. Wing-Agg assigns aggregate value
efficiency rather than aggregate value as jobs’ priorities to optimize for high value throughput.

8Although Wing-Agg and shortest-job-first both use job resource-time in their decisions, Wing-Agg frequently
runs longer, more value-providing jobs ahead of shorter jobs.
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6.4 Experimental setup
This section provides an overview of the Cosmos resource management infrastructure, describes
our evaluated scheduling policies, and describes our experimental methodology.
Downloads attained as value. In our experiments, we use the number of downloads associated
with the outputs of each job as a proxy for the value attained by a job. We model download
attainment using real-world output download traces: if a job j completes at 1PM in the real-world
(from the trace) but only completes at 2PM in our experiment, j attains only the output downloads
associated with its outputs that occur after 2PM, and loses the downloads that occur between 1
and 2PM. A limitation of our model of value is that it does not reward completing a job early.
Further research is required to determine how much additional value the early-completion of a job
yields in data lakes.
Cosmos backend: YARN and hierarchical queues. Cosmos uses a YARN-based resource
manager [38, 126] in the backend and utilizes hierarchical queues (queues, for brevity) to
delineate resource boundaries between organizations—users/workflow managers can only submit
SCOPE jobs to queues belonging to organizations of which they are a part. Cosmos uses a
scheduling policy similar to the default policy that the CapacityScheduler in stock YARN uses,
which orders jobs in each queue based on their (often user-) assigned priorities. A key difference
is that jobs are scheduled with gang semantics in Cosmos—a job is admitted only when the
scheduler can ensure that a user-provided minimum number of parallel, job-requested resources
can be granted to it.

6.4.1 Simulation setup
We evaluate the application of Wing’s analyses to scheduling using simulation-based experiments
due to the scale of Cosmos: the Cosmos traces we use contain ∼40k jobs per day, and ∼160k
inter-job dependencies. Experiments at this scale cannot realistically be attempted on research
clusters without down-sampling jobs, at which point much inter-job dependency fidelity within the
original workload will have been lost. We therefore use simulations to preserve the characteristics
of inter-job dependencies in our experiments.
Simulation platform: design and implementation. Our simulation platform takes a discrete-
event based approach. To ensure that our experiments retain most properties of YARN/Cosmos,
our simulation platform makes minimal changes to the YARN architecture—our implementation
only mocks out the real-time clock and the communication layers of the YARN servers. We
also use real queue sizes for each hierarchical queue in our Cosmos cluster. The authors plan to
contribute this simulator back to the open source community [6].
Simulation accuracy. To make simulation feasible given the scale of our job logs, the simulator
does not model: (1) “internal” dependencies among stages of a job, but rather treat a job as a
rigid collection of tasks; (2) resource-sharing through opportunistic execution [80] of job tasks,
which allows jobs to use more resources than requested when those resources are otherwise idle;
and (3) job sizes based on resources used rather than job-requested resources, meaning that our
simulations only consider the deep blue area in Fig. 6.7.

To evaluate the fidelity of our simulator, we measure the absolute differences in job completion
times between jobs in our simulations (using the baseline system policies) and the same jobs run
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Figure 6.7: Cluster utilization. This figure shows the job-requested and total resource utilizations of our
real cluster.

in the real cluster. We normalize the deltas by the job’s real-world latency, and observe that even
at the 99th percentile, jobs are shifted by only 1.3% of their latencies. Our experiments run at
100% cluster capacity also achieve average resource utilization for job-requested resources within
1.5% of what is observed in the real cluster.

6.4.2 Evaluated scheduling policies

In addition to Wing-Agg (§6.3), we evaluate value-attainment on our workload traces on the
following scheduling policies. All implement Cosmos’s gang-scheduling semantics.
PRIO represents Cosmos’s current approach, and is the default scheduling policy used by stock
YARN in its CapacityScheduler. It orders jobs within each hierarchical queue based on user-
specified priorities.
Wing-MIL. Millennium [32] is a VF-aware scheduler that orders jobs based on expected value
attained per resource time: For each queued job it computes how much value can be gained at an
estimated job completion time, divides the value by total job resource-time, and orders jobs by the
resulting quotient. MIL is our implementation of Millennium on YARN, following descriptions in
its design as closely as possible.

Wing-MIL is MIL using Wing-informed value functions (VFs): In addition to capturing how
the job-local value of a single job decays, a Wing-informed VF captures potential value associated
with the job lost over time by modeling a job’s full decay of downloads. A job j attains all of
j’s aggregate downloads in the most optimistic case if it completes before or at its real-world
completion time; otherwise, it loses value according to when users perform download operations
and when downstream jobs fail due to it not completing on time (illustrated earlier in Fig. 6.5).
For example, in a Wing-guided VF, if j completes at 1PM in the real-world but only completes at
2PM in our experiment, j loses all the direct downloads that occur between 1 and 2PM, and all
the indirect downloads rooted in jobs that directly depend on j submitted between 1 and 2PM.
Plan-ahead based VF-aware policies. We attempted to evaluate more sophisticated plan-ahead
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Figure 6.8: Distribution of job value. This figure shows the distributions of job-local value and aggregate
job value, along with a Zipfian distribution fitted to job-local value. The distribution of job value deviates
from Zipfian at lower job rankings.

based VF-aware policies, e.g., FirstOpportunityRate [104]. But, we found that one implementation
of such a policy couldn’t accommodate workloads at Cosmos scale, and efforts to mitigate
bottlenecks by caching and limiting plan-ahead led to less value attainment than simpler policies
(e.g., MIL). We therefore do not include our attempts with such a policy, as further work is
warranted before conclusions are drawn.

6.4.3 Workload and predictor descriptions

Dataset. We use data from the final four weeks of our analysis dataset to evaluate our scheduling
policies: Within the four weeks of data, Wing uses data in the first and second weeks to establish
job and dependency profiles. Experiments are conducted over the third week, and downloads
(value) are counted for each job up to one week (into the fourth week) from the completion of the
job. Each day of traces contains ∼40k jobs and ∼160k inter-job dependencies.
Considering inter-job dependencies. Different from prior work, our experiments take character-
istics of inter-job dependencies into account to realize more realistic workloads. For example, if a
job holds a hard dependency on the output of an upstream job but the output is not available in
time, the job fails due to missing input. Other dependency patterns, such as polling behavior (when
a job waits for its inputs to become available), are also modeled faithfully. Jobs and dependencies
considered in our experiments are described in Table 5.1.
Job value distribution. Job value, as measured by the number of downloads associated with
the timely completion of a job in our experiments, are distributed roughly in a Zipfian fashion
(s = 1) with deviation at the low end, as shown in Fig. 6.8. This means that the most valuable
jobs are downloaded significantly more times than less valuable jobs. When scheduling for value
on a workload that is inter-job dependency aware, schedulers should work to unblock the most
valuable jobs before they arrive in order to attain their value.
Value efficiency predictor. Wing-Agg and Wing-MIL use a predictor to estimate the aggre-
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Figure 6.9: Value efficiency prediction. This figure shows the CDF of our predictor’s performance on
predicting the value efficiency and aggregate value efficiency of recurring jobs.

gate value efficiency associated with upcoming recurring jobs to optimize for value throughput.
While §6.1 shows that direct inter-job dependencies can be predictable, it neither considers pre-
dictions on a job’s subgraph of downstream dependencies, nor a job’s value impact. Evaluating
predictions on aggregate value efficiency therefore allows us to better understand the performance
of Wing-guided schedulers. For recurring jobs in our experiments, we use a median-based pre-
dictor to predict the value efficiency associated with a job. That is, given a recurring job j of
template τ , we predict j’s value efficiency based on the historical median value efficiency for jobs
of template τ .

Fig. 6.9 shows the performance of our value efficiency predictor in a CDF. For predicting the
aggregate value efficiency of a job, 39% of our predictions fall within ±20% of the actual value
efficiency of a job, while for predicting the value efficiency of a single job, 44% of our predictions
fall within ±20% of the actual value efficiency of a job. While we are working on further studies
to improve predictor accuracy with more sophisticated methods, we find that the performance
of our simple predictor enables Wing-Agg to outperform other evaluated scheduling policies in
value attainment (§6.5).

6.5 Experimental results

We evaluate the efficacy of each scheduling policy for the actual full Cosmos resource capacity
(100%) and for smaller capacities (at 80–20%). Value-attainment results are reported as a
percentage of value achievable—i.e., if all jobs in workloads complete before any of their values
are lost.
Cluster capacities & consequential policy decisions. Scheduling is most interesting when
cluster capacity is constrained and schedulers need to make difficult decisions regarding which
jobs to provide resources. Indeed, at 100% capacity, the baseline and more advanced schedulers
perform similarly, completing > 99% of all jobs in the trace. We find that the lower cluster
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capacities (i.e., ≤ 40%) best exemplify the consequences of decisions a scheduler makes. We
therefore focus the discussion of our results at these capacities to maximize observable differences.
Takeaways. Our experiments yield the following key takeaways. First, policies guided by Wing
are better at achieving value when clusters are heavily-constrained. In particular, Wing-Agg
outperforms all other compared policies at all capacities and improves value attained by up to
21% as capacity declines. Second, understanding the downstream impact of a job is crucial in
constrained clusters, and that Wing-guided inter-job dependency predictions are accurate enough
to be practical: Wing-Agg can effectively complete the prerequisites of the most consequential
jobs. Finally, we demonstrate significant opportunity in applying inter-job dependency awareness
in Wing to a cluster-wide queue and establishing a cluster-wide value metric: Wing-Agg achieves
up to 93% of all value in our workload when using a single cluster-wide queue, using only 20%
of cluster capacity.

6.5.1 Benefits of Wing guidance
Fig. 6.10 shows that policies guided by Wing beat PRIO at all capacities, with value attainment
gaps widening as the cluster is increasingly stressed. At 60% capacity, Wing-Agg achieves 87%
of value (vs PRIO’s 80%). At 40% capacity, Wing-Agg achieves 77% of value (vs PRIO’s 62%).
Even at 20% capacity, Wing-Agg is able to capture more than half of all value (55%), while PRIO
only captures 35% of value.

Considering aggregate value gives Wing-guided schedulers a two-fold benefit over PRIO.
First, it naturally “fixes” priority mis-configurations, such as priority inversions, by propagating
job value upstream, such that downstream jobs with high value are not blocked. Second, it guides
schedulers toward sub-DAGs of high value efficiency jobs effectively, allowing schedulers to
achieve more value with less resources.
Are ad-hoc jobs disadvantaged? Since Wing-Agg focuses on recurring jobs, we examine our
logs to see if ad-hoc jobs are at a disadvantage when scheduled by Wing-Agg vs recurring jobs,
where the priority of ad-hoc jobs are determined by the median aggregate value efficiency of
previous jobs submitted by the same user. We find, from results at 20% cluster capacity, that 25%
of recurring jobs fail, compared to 42% of ad-hoc jobs. However, recurring jobs also carry 9×
more value than ad-hoc jobs. To optimize for value, Wing-Agg necessarily needs to complete
larger fractions of recurring jobs. Indeed, recurring jobs are more often production jobs [78].
Dynamic priorities (Wing-MIL). Intuitively, policies using dynamic priorities (e.g., value
functions, or VFs) such as Wing-MIL should perform better than static policies such as Wing-Agg,
as VFs can express both importance and urgency while priorities only allow the expression of one
of the two dimensions; but, we observe that Wing-Agg outperforms Wing-MIL at all capacities,
albeit only slightly.

Unlike Wing which only depends on aggregate value-efficiency predictions, Wing-MIL also
depends on the time-to-dependency predictions of directly-dependent jobs (§6.1) to determine
when aggregate job value decays. But, while a part of this underperformance is indeed caused by
imperfect predictions of time-to-dependencies, we find that providing Wing-MIL with perfect job
value and time-to-dependency information does not help much. Further analyzing our results, we
find that this underperformance is mainly due to Wing-MIL’s failure to consider the properties of
inter-job dependencies. For example, a downstream job that polls for the arrival of its inputs will
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Figure 6.10: Benefits of Wing guidance. This figure shows the value attained for each scheduling
policy, normalized to total value achievable. Wing-guidance (exemplified in Wing-Agg and Wing-MIL) is
significantly beneficial at constrained capacities.

not fail if its upstream jobs complete late. But, VFs constructed from historical data will still reflect
a drop in value at the time the polling downstream job is expected to arrive, leading Wing-MIL
to believe that it should give up prematurely on scheduling the job. This shortcoming can be
addressed by considering dependency properties explicitly, but our attempted implementation of
such a policy does not significantly improve over Wing-Agg: both Wing-Agg and our attempted
implementation can complete the most impactful, value-efficient jobs in a timely manner.
Practicality of Wing-Agg. The simplicity of Wing-Agg is desirable from an engineering stand-
point, as Wing-Agg is both highly practical and highly scalable: Integrating Wing-Agg into a
production cluster requires minimal changes to the existing resource management framework,
and all the information needed for Wing-Agg to determine a job’s priority can be pre-computed
offline in Wing’s analysis pipeline (§6.6). Adoption of Wing-Agg into production can therefore
be straightforward, upon confirming job valuation schemes.

6.5.2 Sensitivity and ablation studies
Aggregate vs. job-local value. This section discusses benefits of understanding job value at an
aggregate vs job-local level by comparing Wing-Agg against Wing-Direct, where Wing-Direct
considers the job-local value efficiency of a job: i.e., Wing-Direct only considers direct-downloads
associated with the outputs of and the compute-time of a single job only.

The patterned bars in Fig. 6.11 show the normalized value attained by Wing-Agg and Wing-
Direct. While Wing-Direct outperforms PRIO, Wing-Agg maintains significant benefit over
Wing-Direct at the tightest capacities: Wing-Agg attains 13% more overall value than Wing-Direct
at 20% capacity. Our analysis finds that Wing-Direct’s knowledge of job resource consumption
allows it to effectively complete jobs at the head of queue, enabling it to complete a similar amount
of jobs as Wing-Agg. But, with knowledge of historical aggregate value efficiency, we find that
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Figure 6.11: Benefits of aggregate job value. Aggregate (corresponding to aggregate download-aware)
vs Job-local (corresponding to direct download aware only) bars show the benefits of aggregate value,
compared to only scheduling based on job-local value. The solid portion of the bars show the benefits of
Oracle knowledge.

Wing-Agg completes jobs in the more value-heavy sub-DAGs of the inter-job dependency DAG,
yielding significant improvements over Wing-Direct.
Wing predictions vs. Oracle knowledge. We examine how much potential benefit better predic-
tions can provide to each Wing-aided policy. Oracle Wing-Agg represents Wing-Agg endowed
with perfect knowledge of aggregate value efficiency, and Oracle Wing-Direct represents Wing-
Direct provided with perfect knowledge of job-local value efficiency.

While we find that having better predictions are beneficial, the differences between the solid
(representing policies with Oracle knowledge) and the patterned bars (representing policies with
Wing-provided predictions) in Fig. 6.10 and Fig. 6.11 show that at most capacities, Wing-guided
schedulers achieve close to the value attained by their Oracle variants. However, having more
accurate information presents opportunity for significant gain in value attained for Wing-Agg at
20% capacity: e.g., Oracle Wing-Agg improves value realized over Wing-Agg by 8% of overall
value. Conversely, although Oracle Wing-Direct is granted exact knowledge of how value-efficient
each job is, its view of the overall inter-job dependency graph leads to only incremental benefits.

Oracle benefits to aggregate value aware policies come from a more accurate knowledge of a
summarized view of the inter-job dependency graph: compared to single job value-aware policies
with Oracle knowledge, a policy such as Oracle Wing-Agg can efficiently complete the most
consequential jobs in the job dependency graph, increasing value attained (by up to 18% of overall
value vs Oracle Wing-Direct) and reducing the number of jobs failed due to missing input (by 3%
of all jobs vs Oracle Wing-Direct).
Sensitivity to mis-predictions. We examine the sensitivity of Wing-Agg to aggregate value
efficiency mis-predictions on our workload by running experiments that introduce artificial shifts in
aggregate value efficiency provided by Oracle Wing using 20% cluster capacity. Each experimental
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run is associated with a maximum artificial shift s, where s ∈ {1.1, 1.25, 1.5, 2, 5, 10}. For each
job j within each run, we scale the aggregate value efficiency eval of j provided by Oracle Wing
by multiplying eval by a randomly sampled multiplier m between 1/s and s. Our results show
that Wing-Agg is not sensitive to mis-predictions in value on our workload: For s ≤ 5, value
attained is only reduced by at most 4% vs Oracle Wing-Agg. For s = 10, value attained is only
reduced by 11%. This insensitivity is because job values in our workload are distributed in a
Zipfian fashion (§6.4.3), where the most valuable jobs are much more valuable than other jobs.
Reducing transitive closure computation. At 20% capacity, Wing-Direct (0 iterations of Wing’s
multi-hop analysis) attains 42% of all value, while Wing-Agg (9 iterations executed) attains
55% of all value. In Fig. 6.6 in §6.2.5, we find that 99% of aggregate value of most jobs can be
explored in four iterations of Wing’s multi-hop analysis. We therefore believe that four iterations
of exploration would be sufficient to similarly attain 55% of all value, and that two iterations of
exploration would allow us to attain close to 50% of all value.

6.5.3 Cluster-wide queue and value metrics
Our earlier results correspond to a simplified view of Cosmos using strictly enforced queue
boundaries. Hard queue boundaries restrict placement more than in the real system, where
resource-sharing (§6.4.1) softens queue boundaries, which might exaggerate Wing-Agg’s benefits.
To confirm that Wing-Agg’s improvements are not due to hard queue boundaries, we evaluate a
boundary-free alternative with experiments run using a single global, cluster-wide queue.
Evaluation. Fig. 6.12 shows the value attainment of our evaluated scheduling policies using a
single cluster-wide-queue. We note that all jobs are able to complete for all scheduling policies
at 60% cluster capacity. Indeed, the dark blue area in Fig. 6.7 show that these requests peak at
around 60%. At 40% capacity, the cluster still has more capacity than needed most of the time:
Wing-Agg achieves 99% of value, and Wing-Direct and PRIO achieve 97 and 93% of value,
respectively.

Under extreme capacity crunch (e.g., 20% capacity), removing restrictions of hard queue
boundaries improves value attained of all policies. But, a Wing-guided scheduler sees significantly
more benefit in terms of absolute value achieved. With a cluster-wide queue at 20% capacity,
Wing-Agg attains 93% of value, whereas Wing-Direct attains 84%, and PRIO only attains 47%.
Furthermore, Wing-Agg fails fewer jobs compared to both Wing-Direct and PRIO (11% vs 13%
and 25% of jobs, respectively).

We find that understanding inter-job dependencies is critical, as Wing-Direct with Oracle
knowledge did not significantly outperform Wing-Direct with predicted values, both in terms of
value attained and in terms of number of jobs failed; yet, we find that Wing-Agg with Oracle
knowledge, in this setting, can achieve up to 98% of all value (comparable to performances at
100% capacity), while failing only 7% of all jobs (compared to 26% in a multi-queued setting at
20% capacity). One of the reasons why Wing-Agg is able to attain 93% of all value using only
20% of cluster capacity is due to its ability “unblock” the most valuable downstream jobs.

Recall that the simulated job sizes in our experiments are based on job-requested resources,
rather than job-used resources, which may be higher because of opportunistic execution. As
a result, cluster utilization is lower in our experiments. But, we believe that the rankings of
the different schedulers are not affected, because the number of opportunistic resources highly
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Figure 6.12: Benefits of Wing-guidance with a cluster-wide queue. This figure shows the value attained
for policies from 60–20% cluster capacities in a cluster with a merged cluster-wide queue. All policies
complete all jobs at 60% capacity. Wing-guidance (exemplified by Wing-Agg) is increasingly beneficial at
lower capacities. The solid portion of the bars show the benefits of Oracle knowledge.

correlate with that of allocated job-requested resources, both across the top 10% of most valuable
jobs (Spearman correlation of 0.85) and across all jobs (Spearman correlation of 0.84). Indeed,
the amount of opportunistic resources available to a job is capped with a max proportional to the
number of allocated job-requested resources [111]. So, the relative differences shown for 20%
cluster capacity may instead be for 30% cluster capacity in the heavier workload.

Toward establishing a cluster-wide value metric. Our results confirm that removing queue
boundaries would be beneficial. Partitioning resources into queues naturally introduces resource
fragmentation, but usage of queues is often viewed as a “necessary evil,” as certain organizations
are willing to pay more to have guaranteed access to their share of compute. Yet, näively removing
queue boundaries without a quota-system [127] in place may introduce resource competition,
where users across different organizations assign increasingly high priorities to their jobs to acquire
guaranteed resources. A cluster-wide, automated arbitrator that understands both system-internal
(e.g., aware of downstream number of affected jobs and user-downloads) and organizational/user-
defined notions of importance is therefore required. We see this as an exciting direction for further
research.

State of deployment. Instead of immediately deploying Wing-Agg as described, the Microsoft
Cosmos resource management team has asked us first to deploy an inter-job dependency advisory
tool using analyses from Wing to aid users on better configuring their jobs (§6.6). The tool will
allow us to gather user feedback on our recommendations.
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6.6 Owl: Visualizing inter-job dependencies and job impact in
shared clusters

As we have described previously, in companies with many users and sizable shared data repos-
itories, job owners are seldom aware of who consumes their jobs’ outputs, as their knowledge
of job dependencies is often limited by their scope of business interactions and contracts. At
the same time, seemingly harmless modifications to upstream jobs (e.g., submission schedule,
priority, and output schema) can produce a ripple-effect on downstream jobs, interrupting chains
of inter-dependent jobs and workflows and causing businesses significant amounts of damage.
Such obscure job dependencies often require co-dependent teams to establish carefully negotiated
service level agreements, a counter-productive process towards the goal of a universal data lake.
Indeed, we have seen in our experiments (§6.5) that schedulers guided with inter-job dependencies
and value functions achieve more value compared to those that do not. This section describes Owl,
a visualization of Wing’s analyses that can help users identify important jobs and impactful jobs.
(1) Owl exposes job dependencies. Analyzing data from Wing, Owl reveals job dependencies
within-and-across workflows that are otherwise hidden in popular workflow visualizers [18, 19].
Owl also visualizes recurring job dependencies, enabling users to explore dependency metrics
(e.g., time-to-dependency, number of priority inversions) between frequently dependent jobs and
use these metrics to fine-tune job hyper-parameters (e.g., priority, resources allocated).
(2) Owl evaluates jobs based on job impact. The potential of jobs to disrupt subsequent
processes led us to develop a concept of job importance based on a job’s historical downstream
dependencies. Using a novel algorithm, Owl quantifies a job’s potential downstream impact in two
dimensions: 1. work impact measures a job’s effect on other jobs and 2. user impact measures its
effect on cluster users. While other systems have tackled the woes of managing the sharing of large
amounts of data from the perspectives of data curation, discovery, and provenance [27, 65, 69, 96],
to the best of our knowledge, Owl is the first to perform job valuation by combining job telemetry
with data provenance.

With a clear view of job dependencies and quantified measures of job downstream impact,
users can optimize their jobs with a better understanding of the consequences of their modifications,
while avoiding the disruption of “valuable” jobs.

6.6.1 Representing dependencies
Job dependencies can be represented as a weighted directed acyclic graph (WDAG), where each
vertex is an instance of a job and each edge represents data-flow between a pair of job instances
(where data is generated by the source and consumed by the target vertex). The weight of an edge
represents the reliance of a target job on a source job, and is determined by a flexible weighting
scheme.

6.6.2 Visualizing workflow dependencies
Motivation. Users often submit workflows, or sets of inter-dependent jobs, to complete complex
business tasks. Although these business tasks might similarly be achievable with a single mono-
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Figure 6.13: Workflow graph Shows the job dependency structure within a workflow. Allows
users to identify important jobs by auto-sizing job vertices with respect to job execution attributes
such as CPU-time (depicted).

lithic job, breaking the job into smaller component jobs allows for improved code reusability,
manageability, and debuggability. These workflows are usually managed by automated time-based
job scheduling systems.

In a large organization like Microsoft, it is virtually impossible for users to recognize all
consumers of a job’s outputs. Debugging workflows can therefore be a daunting task, as workflows
can include numerous job dependencies across multiple workflows, each owned by a different
team. The lack of awareness of dependent jobs external to a workflow can lead to job disruptions.
For example, since a workflow owner often only cares about the end-result of their workflow (i.e.,
when their business task completes), intermediate jobs can be altered without warning as long as
the pipeline completes end-to-end. These seemingly harmless modifications can potentially cause
external job failures unbeknownst to the workflow owner due to inconspicuous inter-workflow
dependencies. Owl’s workflow view clarifies dependencies within-and-across workflows.

Visual features. Owl’s workflow graph view allows users to browse important properties of their
workflows using an interactive graph (Fig. 6.13). Graph vertices (workflow jobs) can be resized
proportionally to a selected job attribute to help users identify outliers or anomalies. For instance,
a user can size vertices with respect to job runtime to identify execution bottlenecks or with
respect to CPU-time utilized to analyze resource budget consumption. A standard Gantt chart
shows users when each workflow job is submitted and how long it runs for during the workflow’s
lifetime.

The inter-workflow dependency graph allows users to discover dependencies across workflows.
With the graph, users can easily identify owners and properties of upstream and downstream
workflows, as well as pinpoint problematic cross-workflow job dependencies.

The workflow diff utility enables side-by-side comparison between two executions of the same
recurring workflow using interactive graphs. It allows users to effectively identify anomalies in
workflow structures, such as when a workflow instance executes more jobs than usual.
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6.6.3 Visualizing recurring dependencies
Motivation. Recurring jobs, or jobs that are repeatedly submitted over time to analyze fresh
data, make up the majority (˜60%) of CPU-time utilized in Microsoft’s Cosmos clusters [78].
When recurring jobs depend on each other, a recurring dependency is introduced and an implicit
contract is formed between the pair of jobs. Breaking the contract in any way can potentially lead
to service disruption downstream. It is thus in a job owner’s interest to understand characteristics
of upstream recurring jobs and be aware of recurring jobs consuming the job’s output.
Visual features. Aside from showing basic recurring job attributes (e.g., periodicity and distribu-
tion of job execution properties), Owl’s recurring jobs view features a recurring dependency graph
(Fig. 6.14) that allows users to navigate and analyze recurring dependencies and their statistics
(also displayed in an interactive distribution chart), both upstream and downstream.

With the dependency graph and statistics, users will be able to discern important dependencies.
For example, using the time-to-dependency statistic, users will be able to see which upstream
job their recurring job is frequently waiting on and get a sense of their job’s deadline slack
with respect to the submission time of downstream jobs. Using the percent-consumed statistic,
determined by the number of job instances consumed by a recurring downstream job over the
total number of job instances completed, users can get a sense of which jobs upstream are critical
to their job as well as which jobs downstream their job is critical to.

6.6.4 Visualizing job impact
Motivation. Modifying job properties (e.g., output schema) without considering job dependencies
can cause a ripple effect downstream, leading to job delays or even failures. As companies move
towards universal data lakes that promote heavy data sharing, altering jobs without breaking
downstream dependencies becomes a difficult task. While avoiding job disruption is always
preferred, in a production setting it is critical, as job failures can affect business continuity.

To provide users a sense of how important a job is, in terms of its potential effect on down-
stream operations, we introduce the job impact score, derived from historical job dependencies
and telemetry logs. The job impact score allows users to quickly discern how many downstream
operations their job affects, as well as which downstream operation, if affected, will lead to the
most potential operation disruption further downstream.

There are two main facets to our job impact score: (1) the work impact facet measures the
impact of a job on downstream jobs in terms of historical CPU-time blocked (i.e., computation-
hours that cannot proceed due to the upstream job not completing by the submission time of the
downstream job). (2) The user impact facet measures the impact of a job on users in terms of the
historical number of downloads blocked (i.e., file views that cannot happen due to the upstream
job failing to produce its output(s)). The remainder of the subsection briefly walks the reader
through our scoring methodology and how Owl visualizes historical job impact.
Methodology: evaluating job impact. Owl uses a method similar to that proposed in §6.2.3 for
quantifying different facets of job importance fairly using jobs’ historical downstream dependen-
cies. Each job j starts out with a base score kj . The base score corresponds to a job run statistic —
for example, the statistic used to compute work impact is CPU-time while the statistic used to
compute user impact is number of downloads. Other statistics, such as bytes read/written, can
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Figure 6.14: Recurring Job dependency graph Displays the target recurring job (center) and its upstream
(left) and downstream (right) recurring jobs. Hovering over an upstream/downstream link shows statistics
of the dependency.

easily be incorporated.
Downstream jobs contribute scores upstream, where the amount of contribution a downstream

job makes to an upstream job is determined by the edges on the path(s) between the jobs and by
the base score of the downstream job.

The impact score9 of a job j is the sum of all its de-duplicated contributions from down-
stream (§6.2.5).
Methodology: discovering dependencies. Computing the job impact score requires discovering
the transitive closure of each job in the job dependency WDAG while maintaining edge weights
along the way. We use the iterative bulk-synchronous-parallel algorithm introduced in Algorithm 1,
§6.2.4, to compute the transitive closures.
Visual features. The job view, aside from providing a summary of job statistics, features the job
impact view.

Job impact is visualized in two graphs. 1. The job utility function graph (Fig. 6.15) allows
users to get a better sense of the urgency of their jobs. Each drop in score on the red/gray lines in
the figure corresponds to the submission of a downstream dependent job relative to the submission
time of the selected job. The magnitude of each drop corresponds to the value of the submitted
downstream job. Naturally, users would want their jobs to complete before a downstream
dependent job with high value is submitted, hence enabling users to infer a “deadline” for their
jobs. 2. The Sankey graph (Fig. 6.16) allows users to quickly identify important downstream
dependencies. The graph shows how value flows through job dependencies, where the height

9Only deduping and summing the base scores of downstream jobs [96] is inflexible and disproportionately
promotes jobs with high degrees of fan-in.
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Figure 6.15: Job utility function graph Shows the value (score) of a job as a function of time-from-
submission. The score displayed is normalized to the score of the most valuable job in the hierarchical
queue. The red line displays the utility function of the user-selected job, while the gray lines represent
utility functions of other instances of the same recurring job. The blue line sketches the average score over
time of the recurring job.

Figure 6.16: Interactive Sankey graph Shows how downstream jobs contribute value upstream. Each
vertex is a job, with the height of the vertex representing relative job value. Hovering over a job displays its
name and value The root job (left) represents the user-selected job. Clicking on leaf jobs (right) expands
the graph further downstream.

of a vertex represents the importance of a job, while the width of a flow between two vertices
measures how much value a downstream job contributes upstream. For both graphs, users can
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select between our two facets of job impact: work impact, which is measured in CPU-hours, and
user impact, which is measured in output downloads by users.

6.6.5 Summary
Shared multi-tenant infrastructures have enabled companies to consolidate workloads and data,
increasing data-sharing and cross-organizational re-use of job outputs. This same resource-
and work-sharing has also increased the risk of missed deadlines and diverging priorities as
recurring jobs and workflows developed by different teams evolve independently. To prevent
incidental business disruptions, identifying and managing job dependencies with clarity becomes
increasingly important. Owl is a visualization tool that visualizes job dependencies derived
from historical job telemetry and data provenance data sets through Wing, and this section has
showcased Owl’s features that can help users identify critical job dependencies and quantify job
importance based on jobs’ impact.

6.7 Related work

Workflow managers. Workflow management for batch analytics jobs is a widely studied area
in the fields of databases and data management [73, 97, 98]. Our work differs in two primary
ways: (1) workflow managers often assume the availability of a dependency graph up-front, while
Wing infers properties of inter-job dependencies from job history; and (2) workflow managers
optimize only a single pipeline of jobs submitted by one user at a time, while Wing considers
inter-dependent jobs across workflow and organization boundaries.
Cluster workload analysis. Although much work has been done on cluster workload analysis
from many different perspectives (e.g., resource/workload heterogeneity [24, 36, 63, 89, 107],
failure analysis [31, 46, 108], job predictability [103, 112, 124], and intra-job task dependency [59,
60, 122]), most prior work assumes (implicitly or explicitly) that each job is independent of other
jobs. This paper fills the knowledge gap with analyses of inter-job dependencies and application
of this knowledge in cluster scheduling.
Cluster scheduling. Although a variety of work has been published in the area of cluster
scheduling, each trying to address scheduling woes of different kinds of workloads (e.g., support
for general batch analytics [29, 33, 48, 53, 54, 72, 78, 103, 125, 126], low latency scheduling [42,
43, 80, 101], and strategies to handle mixes of workloads [38, 51, 52, 110, 127]), most work in
cluster scheduling similarly assume the independence of jobs. Our work shows that incorporating
knowledge of inter-job dependencies can improve cluster scheduling in an environment with a
lot of data and work product sharing, and we believe that considering inter-job dependencies can
help future schedulers better tackle challenges, such as enabling better job task placement and
learning better scheduling policies [91, 109].
Task-DAG schedulers assign resources to inter-dependent tasks within a job based on knowledge
of the overall task-DAG [48, 59, 60, 91]. Such techniques and our proposed policies can be
complementary, as task-DAG schedulers drill into job-level details while our schedulers (e.g.,
Wing-Agg) work at a higher level and treat jobs as black boxes. In particular, schedulers that
predict the arrival of future jobs [78, 91] can benefit from the availability of inter-job dependency
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context to refine their predictions. Some task-DAG scheduling techniques could also be applied to
the problem of inter-job dependency scheduling; but, these task-DAG schedulers generally assume
upfront availability of task-DAGs, while full inter-job dependency graphs are rarely available
ahead of time. An interesting direction for future research is in combining task-DAG scheduling
techniques with some form of Wing-provided “probabilistic inter-job dependency” DAGs.
Jockey and Morpheus. Jockey [48] uses the direct dependencies of jobs to illustrate the im-
portance of maintaining low job latency variance, but uses a step-function with value=1 until
the user-provided deadline as each job’s value function (VF). Morpheus [78] improves upon
Jockey’s notion of VFs by deriving deadlines based on a job’s first consumer (as observed from
historical instances of that job), but still considers all jobs as equal in value. In addition to our
characterization of inter-job dependencies in a large analytics cluster, our work extends Morpheus
and Jockey in two ways: (1) jobs no longer all have the same value—instead, Wing derives each
job’s value (and therefrom priority) as the sum of a chosen value metric (e.g., downloads) for all
downstream dependencies, and (2) value is no longer a step-function with a single deadline based
on a job’s first direct consumer, but a rich decay proportional to the aggregate value of dependency
sub-DAGs rooted in each direct consumer. While we do not directly compare against Morpheus,
in §6.5.1, we find, in the context of Wing-MIL, that a premature drop in aggregate value can
lead to the scheduler giving up early when dependency properties are not considered, leading to
lower value attainment. Considering value as a step-function with a single deadline can therefore
potentially be detrimental when inter-job dependencies are present in cluster workloads. While
Wing-Agg uses only the initial “height” of the aggregate value VF of each job to set priorities,
we believe that full aggregate value VFs can still better guide other scheduling decisions, such as
determining which jobs to load-shift.
Systems using job recurrence and data provenance. There has also been much prior work
on systems that efficiently collect provenance data [39, 96] and systems that both exploit job
recurrence and data provenance on other problems [62, 76], such as garbage-collecting shared
computation results. Our work uses similar ideas, but focuses on facilitating better value attainment
in resource scheduling.

6.8 Summary
Complex inter-job dependencies pervade modern data lakes, creating complex problems as cluster
schedulers make decisions without knowing of them. The Wing dependency profiler uncovers
these dependencies from provenance logs and provides improved guidance to cluster schedulers.
Evaluations with real job traces show that significantly more value, in terms of successful user
downloads, can be attained by using Wing-guided priority assignments over those provided by
users. Wing’s effectiveness opens a new range of resource management possibilities guided by
automatically-determined knowledge of the impact of jobs.
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Chapter 7

Talon: Reducing costs with
dependency-informed load-shifting

In Chapter 5, we examined and characterized the prevalance of inter-job dependencies in today’s
shared data analytics clusters, and in Chapter 6, we studied how inter-job dependencies can be
used to improve cluster scheduling to attain greater job value. In this chapter, we take a look at
how we can further exploit inter-job dependencies to reduce long-term resource commitment in
cluster capacity planning by load-shifting and using intermittently-available transient resources.

As a recap, as companies amass increasing amounts of data, shared compute environments such
as public and private clouds are favored more and more over silo-ed clusters to eliminate the cost
and complexity of cluster ownership and facilitate easier data analytics and data sharing. Indeed,
the lowering of data access barriers and availability of systems that facilitate data discovery [27, 65]
induced a dramatic rise in the number of inter-job dependencies in shared clusters [34, 35], where,
for example, a batch analytics Job 2 (inter-)depends on an earlier job Job 1 if Job 2 takes as input
any output generated by Job 1.

The sharing of data environments has introduced new models for users to manage compute
resources for their analytics jobs. To ensure that an organization’s users have enough resources to
complete their data analytics tasks in shared environments, organizations can buy fixed, guaranteed
share of reserved resources under committed, long-term contracts [2, 29, 38]. Such schemes,
however, are inflexible, because they lock users in long-term and can lead to reduced cluster
utilization, as reserved capacity are left unused during workload lulls.

A common strategy for clusters to increase resource utilization is to intermittently make
unused resources available at lower priority and often at lower costs [7, 38]. Azure, for instance,
make unused resources available at lower costs as Spot VMs [3, 23]. Workloads run on these
transient resources run under the proviso that they can be preempted at any given moment, when
resources are needed by higher priority workload (e.g., jobs run with reserved capacity).

In provisioning reserved capacity, whether on-premise or in shared public clouds, organizations
want as little long-term resource commitment as possible to lower cost and increase flexibility,
but using short-term transient resources present unique challenges in resource availability and
preemption. To address these challenges, we propose Talon, a novel heuristics-based workflow
manager. Talon minimizes long-term reserved resource commitment and reduces the cost of
running workloads by exploiting transient resources, all while keeping jobs safe from violating
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their deadlines. It does so by exploiting the prevalence of inter-job dependencies in shared clusters
to safely load-shift jobs to run when transient resources are plentiful, and by co-considering job
task placement and transient resource availability.

Load-shifting can be used to reduce the peak of cluster workloads, and thus reduce required
cluster capacity to support the workloads, by moving jobs run during peak hours to off-peak times.
However, traditionally, load-shifting is difficult without cooperation from users, as schedulers
are often not provided context on whether jobs can be started early or be delayed. The advent
of GDPR [128], which has necessitated many companies to track job data provenance, has
changed this by enabling the analyses of (a) job output consumption patterns and (b) inter-job
dependencies [35]. Together, they allow Talon to determine when job outputs are consumed (i.e.,
job deadlines) and when jobs are ready to run. Talon analyzes and exploits this newly available
job metadata to safely load-shift jobs to when transient resources are plentiful to reduce reserved
resource capacity and cluster operation costs.

While transient resources present significant opportunities to lower reliance on reserved
capacity and cluster operation costs, a challenge to effectively use transient resources is its
intermittent availability: resources can be preempted in bulk [67, 68], interrupting job execution
and leading to clusters not having enough transient resources to serve jobs requesting them. Talon
addresses this challenge by (1) not fully utilizing all available transient resources, leaving buffers
of transient resources to handle preemptions and workload spikes, and by (2) understanding jobs’
deadline violation risks through data provenance analyses, providing safety for jobs with higher
risk of deadline violation with task-level redundancy, while allowing jobs with lower risk to run
on transient resources without redundancy, thereby more effectively using available transient
resources at the same time. Although at first glance, this conservative usage of transient resources
seems sub-optimal in minimizing reserved resource commitment, we find that when used in-
tandem with Talon’s load-shifting policy, Talon experiences minimal job deadline violations
without more reliance on reserved resource capacity.

To explore Talon’s efficacy to minimize reserved resource commitment while keeping jobs
from violating deadlines, we evaluate Talon using workload from Cosmos, Microsoft’s internal
big data platform, and using transient resources from Azure, Microsoft’s public cloud. Our
experiments find that Talon effectively achieves its goals, allowing cluster operators to reduce
reserved capacity by up to 38% compared to running the entire workload on reserved capacity. We
also measure Talon’s monetary cost-efficiency when running entirely in the cloud, using Azure
reserved instances [2] as long-term reserved resources and using Spot instances [3] as transient
resources. Our experiments find that Talon can reduce cost compared to running workloads
entirely on reserved resources by up to 31%. Talon is also effective in minimizing job deadline
violations, yielding a job deadline violation rate of 0.01%. We believe Talon can also help reduce
cost and long-term capacity managed in other scenarios, e.g., hybrid clouds with workload bursts
and systems exploiting intermittent green energy sources such as solar and wind energy.
Contributions. This paper makes the following primary contributions: (a) it presents the first
study of batch analytics job load-shiftability based on real-world job input dependencies in a
large data analytics cluster, presenting significant opportunities for optimizing batch analytics
job scheduling, (b) it presents methods to identify jobs that are load-shiftable using inter-job
dependencies and job output access logs, and (c) it proposes Talon, a novel job workflow manager
that exploits job load-shiftability and low-cost-low-reliability cloud resources to reduce the
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workload peak on reserved resources. Talon allows cluster operators to reduce reserved capacity
by up to 38% and reduce cost by up to 31% compared to running workloads entirely on reserved
resources, while introducing minimal job deadline violations.

7.1 Talon overview
This section describes the Talon system at a high level, providing a summary of its functionalities,
describing its job submission flow, and highlighting key insights.

7.1.1 Load-shifting via inter-job dependencies
Load-shifting a job in time changes the time when a job is run, and can be used to reduce the peak
resource demand of jobs in a cluster. In load-shifting, a job can either be advanced (so the job runs
earlier in time) or delayed (so the job runs later in time). Load-shifting is practical in scenarios
such as cluster capacity crunches, which can happen, for example, during scheduled machine
maintenance. Load-shifting shifts jobs run during capacity crunches off-peak, so they can run
when more cluster resources are available. Talon load-shifts jobs to reduce reserved resource
commitment. Load-shifting, however, has historically been difficult: delaying jobs requires us
to know when a jobs’ output is depended upon, and advancing jobs requires us to know when a
future job will be submitted and when its inputs are available, often requiring the cooperation of
users. Luckily, we can derive both the advanceability and delayability of jobs using data from
JobRepo and ProvRepo.

Talon exploits the prevalence of recurring jobs and inter-job dependencies in Cosmos to
determine the load-shiftability of a large fraction of jobs run in Cosmos. The delayability of a
job can be estimated by analyzing output data usage patterns from historical runs of the same
template1, while the advanceability of a job can be determined using historical inter-job and
data-dependency patterns of jobs of the same template. With the ability to load-shift jobs, Talon
works in-tandem with resource managers to reduce peak cluster workloads safely. We examine
the load-shiftability of Cosmos workloads in more detail in §7.2.

7.1.2 Architecture and job lifecycle
This section presents an overview of the architecture of Talon and walks the reader through the
lifecycle of a job managed by the Talon workflow manager. Readers are welcome to follow along
with the submission process by referencing Fig. 7.1. We examine each component of the system
in further detail in later sections of the paper.

Similar to other workflow managers, Talon manages and submits jobs for users to their
designated clusters. However, in addition to scheduled job submissions, Talon also works with the
cluster resource manager and can choose to load-shift jobs based on cluster load. Jobs registered
with Talon are submitted as follows:

(1) The user registers job instance creators with Talon for load-shiftable jobs. In addition
to usual job submission features such as periodic job submission that many workflow managers

1In theory, though predicting job output usage time can be difficult (§7.2.4).
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Figure 7.1: Talon architecture and job lifecycle. Talon acts as an intermediary between users and the
virtual cluster consisting of reserved and transient resources. Recurring jobs are registered via job instance
creators with Talon for load-shifting. As jobs become ready to run, Talon works with the virtual cluster
resource manager to determine when and how best to submit queued jobs via its placement and admission
policies.

provide, job instance creators allow users to create job instances from templates and specify
if a job should be submitted when Talon deems the job ready based on historical inter-job
dependencies (§7.2). It also allows users to specify Talon-specific submission parameters at the
time of notification from Talon such as latest job admission time, allowing for extra flexibility.
(2) The Wing pipeline (§7.2.1) processes job and data provenance logs from JobRepo and
ProvRepo to determine job recurring-ness, recurring jobs’ in-and-output dependencies, and
recurring jobs’ output consumption patterns. Analysis results are then passed to the Talon analyzer
for evaluating job load-shiftability. (3) Analyzing the output of the Wing pipeline, the Talon
analyzer determines which jobs are eligible for load-shifting based on the availability of their
inputs, and load-shifting time bounds as determined by (§7.2). (4) After jobs are deemed ready
to start by the Talon analyzer, the analyzer requests jobs from its registered pool of job instance
creators, which supplies Talon with the actual jobs to submit, annotated with Talon job submission
parameters such as latest job admission time for each instance. (5) The analyzer then submits jobs
to the admission policy (§7.3), where jobs are queued. (6) The admission policy then receives
cluster resource data from the cluster and works with the placement policy to determine where to
place job tasks (§7.3.1) and when jobs should be admitted (§7.3.2). (7) Jobs are then submitted to
the cluster, and will request resources from the cluster resource manager as determined by the
placement policy in the previous step.

7.1.3 Operating modes

Talon operates in two modes: (1) provision analysis and (2) actual scheduling. In provision
analysis mode, Talon plans for the next cycle of reserved resource provisioning (i.e., reserved
capacity planning) and aims to reduce its peak workload run on reserved resources. In this mode,
Talon will more aggressively utilize transient resources in order reduce the peak of reserved
capacity. In actual scheduling mode, Talon is provided a pre-determined amount of reserved
resources. In this mode, Talon tries to fully utilize reserved resources before using transient
resources in order to not waste reserved resource-time that are already paid-for.
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7.2 Talon analyzer: finding load-shiftable jobs

The Talon analyzer is responsible for identifying load-shiftable jobs and sending them off to
the Talon admission policy when jobs are deemed ready to start (i.e., the jobs’ full set of inputs
are all available), where the admission policy determines when to actually submit the job to the
virtual cluster. This section describes the Talon analyzer, its input datasets, and how it identifies
load-shiftable jobs using inter-job dependencies and job recurrence.

7.2.1 The Wing pipeline: Identifying recurring job candidates for load-
shifting

For jobs to be load-shiftable, they must (1) be recurring, and (2) exhibit recurring in/output
dependency patterns. Specifically, we cannot advance jobs that we do not know will arrive in the
future, nor can we safely delay jobs without knowing when their output files will be needed.

To identify candidates for load-shifting, Talon utilizes output from the Wing pipeline [35, 78],
an inter-job dependency profiler implemented as a pipeline of batch-analytics jobs that identifies
recurring jobs and characterizes their inter-job dependencies based on historical job telemetry and
data provenance from JobRepo and ProvRepo, respectively. Using definitions from Wing, jobs
are identified as recurring if (a) jobs of a recurring template are submitted at least three times over
a period of three months, with at least one submission each month, (b) templatized job names are
an exact match, and (c) source-code signatures are an approximate match. Inter-job dependencies
are identified as recurring if both the upstream and the downstream jobs are recurring.

The Talon analyzer takes as input from Wing a set of historically recurring jobs, their charac-
teristics (e.g., job arrival rate, recurrence cadence, and run time distributions), and jobs’ full sets
of input/output dependencies, recurring or otherwise.

7.2.2 Advanceable jobs
For a job to be advanceable, its arrival must be predictable. Job arrival predictability can either
be provided to Talon directly by job submitters when registering job instance creators, or can
be inferred via historical job arrival and input consumption patterns. Talon can also work with
existing workflow managers to obtain more job metadata to aid in load-shifting. This section will
focus on inferring future job arrivals.
Heuristic to identify advanceable jobs. Talon identifies a job as advanceable if it is recurring
and if its future arrival is predictable; that is, if the recurring job satisfies at least one of the
following conditions:
(1) The job’s arrival is inferrable via input dependencies. Based on historical inter-job dependen-
cies, Talon will identify jobs of recurring template JA as advanceable if the completion of one
of JA’s upstream recurring jobs is highly indicative that a job of template JA will arrive in the
future. Recurring jobs of template JA are identified as advanceable based on upstream recurring
jobs of template JB if jobs of JA has a recurring input dependency on jobs of JB , and for > 90%
of JB’s historical job instances, there is a job instance of JA that depends on their outputs. Here,
the completion of a job of JB is a strong signal that a job of JA will arrive in the future.

97



(2) The job is periodic. A recurring job is predictable if it is periodic. Periodic jobs are recurring
jobs that are submitted on a fixed schedule periodically (e.g., submitted every hour at the start
of the hour). We obtain the set of periodic job templates from Wing’s analyses of historical
data, where Wing identifies periodic job templates as templates whose jobs have near-constant
inter-arrival times (i.e., their inter-arrival times have a low coefficient of variation) [35, 78].

7.2.3 Workload advanceability
We conduct a study in Cosmos to see how much opportunity job advanceability provides Talon
in load-shifting. Namely, we want to find out (1) the precision our heuristic yields to identify
advanceable recurring jobs (i.e., the fraction of actual future-arriving jobs out of all that were
predicted) and (2) how much resource-time in Cosmos is advanceable by how much. This study
does not aim to identify the full set of advanceable jobs, but rather only aims to identify enough
advanceble job resource-time to demonstrate sufficient opportunity for load-shifting.
Methodology. Here, we use a window of two weeks of jobs and inter-job dependencies as the set
of historical data upon which we “train” a predictor (the training window) to predict the arrival of
future jobs in the next day (the testing window). We slide the windows over two months of data,
advancing the windows one day at a time.
Advanceability precision. Our identification of future-arriving jobs achieves a precision of 87%,
close to the 90% threshold (§7.2.2) we use in our policy to identify advanceable jobs via inter-job
dependencies.
Advanceable resource-time. For each advanceable job we correctly predict to arrive, we measure
how much time we can advance the job by. The advanceability of all recurring jobs is upper-
bounded by their latest-arriving input, from which we identify using data provenance logs. If
the recurring job is also a periodic job, we further upper-bound its advanceability by half of its
periodicity. The advancebility of a daily job, for example, is upper-bounded by max(12 hours,
time from latest arriving input). Our study finds that, while most jobs are not advanceable by a
large amount (Fig. 7.2a), up to 42% and 24% of job resource-time can be advanced by greater
than 15 minutes and one hour, respectively (Fig. 7.2b). This indicates that large jobs are often
more advanceable and yield significant opportunities for load-shifting.

7.2.4 Delayable jobs and workload delayability
To safely delay a job (i.e., start a job later), we want to ensure that its outputs are generated before
outputs are first used, either by a downstream job or by an operation through the front end. This
requires us to predict two things about a job: its run time and when its outputs are first used. A
recurring job with low predictability in either its runtime or when its output is used cannot be
safely delayed.
Job run time predictions. We use a sliding-window model that uses the median run time of
recurring jobs in the past week to predict the run time of an upcoming recurring job of the same
template. The window of our model slides by a day at a time (i.e., model is re-computed daily).
We find that 42%, 60%, and 83% of our model’s predictions yield run time prediction errors, as
measured by (predicted − actual)/actual ∗ 100, of 10%, 20%, and 50% or less, respectively.
Fig. 7.3 shows the prediction error distribution of our model.
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Figure 7.2(a): Cluster job count advanceability.
This figure breaks jobs submitted to the cluster
down by job advanceability. While only approxi-
mately 24% of jobs are advanceable by > 15 min-
utes, we find that large resource-time consuming
jobs are more advanceable, such that > 42% of
resource-time are advanceable by > 15 minutes.
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Figure 7.2(b): Cluster job resource-time ad-
vanceability. This figure breaks cluster resource-
time (job-utilized-resources × time) down by ad-
vanceability. More than 42% of resource-time is
advanceable by > 15 minutes, and more than 24%
of resource-time is advanceable by > one hour,
demonstrating opportunities to load-shift cluster
compute.

Job time to output usage (TTOU). While we have access to significant job metadata to categorize
recurring jobs, it is still difficult to predict when the output of a job will first be accessed because
the distribution of recurring jobs’ time to output usage (TTOU) is multi-modal. Fig. 7.4 shows the
distribution of recurring jobs’ TTOU, normalized over each recurring template’s median TTOU.
While the distribution peaks at the median, many jobs fall far to both ends of the distribution,
making prediction difficult. Indeed, we find that even using the most conservative prediction for
TTOU to prevent deadline violations, where a predictor predicts the shortest seen historical TTOU
each time, the predictor still over-predicts for 2% of jobs.
Talon does not delay jobs. When ignoring unpredictable jobs with low run time or low time to
output usage predictability, our workload yields only 9% of job resource-time that can load-shifted
by more than an hour. Considering that delaying jobs is both high-risk and low-reward, Talon
does not explicitly consider delaying jobs. We leave the design of a load-shifter that safely delays
jobs as future work.

7.3 Talon’s load-shifting approach:
Job placement, admission, and scheduling

This section first describes Talon’s policies under its provision analysis mode (§7.1.3), detailing
how it decides on what kind of resources (reserved or transient) to run jobs to minimize job
deadline violations with its job placement policy (§7.3.1) and how it load-shifts jobs using infor-
mation from the Talon analyzer and the cluster resource manager in-tandem with its job admission
policy (§7.3.2). Talon’s provision analysis mode uses transient resources more aggressively
compared to its actual scheduling mode in order to reduce the reserved resource peak. We then
describe how Talon performs actual job scheduling in a virtual cluster with a mix of reserved and
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Figure 7.3: Job run time prediction error. This figure shows the probability mass function of the
prediction error of our median based recurring job run time predictor. Here, error = (predicted −
actual)/actual ∗ 100. 60% of predictions fall within ±20%.

transient resources (§7.3.3).

7.3.1 Job placement policy

This section describes Talon’s job placement policy under its provision analysis mode. Talon’s
job placement policy instructs jobs on what kind of resources its tasks should run and whether
or not jobs should employ fault tolerance strategies if running on transient resources. Talon’s
job placement policy considers resource and job properties (e.g., recurrence, predicted run time,
and job load-shifted time) in-tandem, such that jobs can more effectively use available cluster
resources to minimize reserved resource peaks, while allowing jobs to meet their deadlines.
Keeping track of cluster resource type usage. Talon’s job placement policy determines how a job
should request resources for its tasks. To reduce peak reserved resource workload, the placement
policy can instruct jobs to use transient resources instead of reserved resources. However, due
to the intermittently available nature of transient resources, there can be times when there is
not enough transient capacity to handle queued transient resource requests. The job placement
policy therefore receives periodic resource snapshots from the resource manager to keep track of
available transient resources in the cluster.
Job strategies to handle resource preemptions. For jobs whose tasks run on transient resources,
tasks have a chance of failing due to resource preemption. In batch analytics jobs, a common
strategy to recover from task failure is to retry the failed task, but this can increase job run time.
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Figure 7.4: Normalized job time to output usage distribution. This figure shows the distribution of
time to output usage (TTOU) of recurring jobs normalized against the median TTOU of jobs of the same
template. Much of the distribution lies toward the two tails, making accurate predictions of TTOU difficult.

An effective way to handle task failures in batch analytics jobs without increasing job run time is
to replicate tasks, i.e., to run multiple copies of a given task. As long as one replica of the task
succeeds, the task is deemed successful. The Talon job placement policy can instruct jobs to run
tasks with replicas if jobs run on transient resources. In our experiments using workload from
Cosmos and Harvest VMs from Azure, we find that using a task replication factor of two (creating
two copies of each task) works well to handle transient resource (Harvest VM) preemptions. Other
more advanced fault-tolerance strategies can also be applied at the job placement policy.
Handling transient resource bulk preemptions. Transient resources are intermittently available,
and large amounts of transient resources can be preempted in bulk at any given time, as observed in
prior work [67, 68] and in our workload traces. Bulk resource preemptions can lead to retry storms
where failed tasks running on preempted resources can all submit retry requests at once, which in
turn can lead to long queue times of requests if transient resources are used too aggressively. Talon
robustly handles bulk transient resource preemptions by using transient resources judiciously,
rather than fully packing transient resources whenever available, described in more detail next.
Determining the type of resource a job should use. Talon splits jobs into two cases when
constructing jobs’ task resource request policies: (1) ad-hoc and shorter-running recurring jobs
and (2) longer-running recurring jobs.
(Case 1) Ad-hoc and shorter-running recurring jobs. If a job is categorized as ad-hoc (non-
recurring) or as a predicted shorter-running recurring job (predicted to run less than three minutes),
Talon uses transient resources if there is an abundance of available transient resources, otherwise
it uses reserved resources. Ad-hoc and shorter-running recurring jobs are always run reliably by
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Talon, i.e., they either run on reserved resources or on transient resources with replicas.
Ad-hoc jobs need to be run reliably because they are less predictable, as they have no tracked

historical instances. We find that ad-hoc jobs are not correlated between any of job run time,
TTOU, and job size. We therefore need to run ad-hoc jobs carefully, with high reliability, to meet
job deadlines.

Shorter-running recurring jobs are run reliably, on the other hand, for two primary reasons:
(i) predicted shorter-running recurring jobs use less resource time. Although these jobs account for
nearly half of all jobs in our workload, they only account for roughly 3% of cluster resource-time.
Scheduling them reliably therefore present minimal impact to both reserved and transient resource
availability, while allowing a large fraction of jobs to meet their deadlines; and (ii) preemptions
cause greater disruptions for shorter-running jobs. When resources are preempted in these jobs,
they will need to detect task failures, re-request preempted resources, and set up retried tasks
again to restart the tasks. For short jobs, the process can take a long time relative to their run
times, and is more likely to cause job deadline violations.

To make sure that these jobs run reliably, Talon’s placement policy runs ad-hoc and predicted
shorter-running jobs on transient resources with replicas only if there is an abundance of transient
resources to prevent retry storms on bulk resource preemption. Otherwise, Talon runs these jobs
on reserved resources. To determine if there is an abundance of available transient resources,
Talon uses the following heuristic: available > allocated/t, where t is the placement resource
slack and is configurable (experiments set t = 2).
(Case 2) Predicted longer-running recurring jobs. These jobs include all other jobs not covered
in the previous case, and account for roughly 80% of cluster resource-time while only accounting
for 35% of all jobs. There are therefore significant opportunities to reduce reserved resource
pressure by placing these jobs on transient resources. Talon’s placement policy decides that if
there is an abundance of transient resources or if such an incoming job is advanced by at least half
of its predicted run time, the job will use transient resources for its tasks; otherwise it will use
reserved resources.

Running too many of these jobs on transient resources with replicas, however, can run the
risk of triggering retry storms upon bulk preemption. As these jobs take the bulk of cluster
resource-time, to reduce transient resource pressure, Talon’s placement policy will choose to
take a risk to run these jobs without replicas if they are advanced by > p× their predicted run
times, where p is a configurable placement job run time slack. Since jobs advanced by > p× their
predicted run times have a long slack until their deadlines (experiments set p = 1), they will also
have a long period of time to retry their tasks should any of them fail. By running these jobs with
a single replica, Talon reduces resource competition for transient resources, reducing risk of retry
storms and allowing more jobs to run on transient resources instead of reserved resources. Our
experiments show that this strategy to run only a single replica reduces transient resource-time
usage by 10%, while only leading to minimal job deadline violations.

7.3.2 Job admission policy
Here, we describe Talon’s job admission policy under its provision analysis mode. After a Talon
job is ready to run as determined by Talon’s analyzer (§7.2), it is not immediately submitted to
the cluster. Rather, it is placed in the queue of Talon’s job admission policy to control for cluster
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load and resource availability. Advancing jobs immediately without consideration for resource
availability can cause jobs to run during periods of higher workload, introducing additional
resource contention among jobs. We observe that advancing jobs immediately both increases
reserved resource capacity needed and increases the number of job deadline violations. To
determine when a job should be admitted, the admission policy needs to work with both the
resource manager and Talon’s job placement policy.
Admitting jobs. When a job is queued at the admission policy, the policy first checks the job’s
type. If the job is ad-hoc or a predicted-short recurring job, the job is immediately admitted. As
mentioned in §7.3.1, these jobs are often low resource-time impact or are unpredictable. If the
job is a predicted-long recurring job, the admission policy checks if the job is run on transient
resources. The job will be admitted if it is run on reserved resources, indicating urgency, or if
there is an abundance (§7.3.1) of transient resources.

If the job is not yet admitted, the admission policy will check if the job is advanced by
more than m× its predicted run time, where m is a configurable admission job run time slack.
Note that m is a separate setting from p, as defined in the placement policy. Setting m > p
allows predicted-longer recurring jobs to be admitted earlier and run on transient without replicas,
allowing advancement of jobs while introducing less resource contention. Sensitivity experiments
found that setting m ≤ p increased reserved peak workload. Our experiments found setting m = 3
and p = 1 to be effective.
Latest admission time. Each job can be associated with a latest admission time, such that Talon
admits a job no later than its latest admission time. This time can either be specified by the job
instance creator or be determined by how much time a job is advanced by. Advanced jobs’ latest
admission times are their original submission times before advancement. Algorithm 2 shows the
heuristics used for Talon’s placement and admission policies in its provision planning phase.

7.3.3 Actual scheduling mode
§7.3.1 and §7.3.2 describe how Talon plans for future capacity, and more-aggressively uses
transient resources to reduce the peak of workload run on reserved resources—inviting a tendency
to under-utilize reserved resources. When performing actual scheduling, however, schedulers
should fully use reserved resources, which are already paid-for ahead of time.

Talon’s actual scheduling mode allows for better utilization of reserved resources. Here,
Talon’s policy placement decisions are made as-is using a shim resource management layer, but
the actual placement of jobs’ tasks use reserved resources when possible, assuming a planned
capacity limit on reserved resources. In other words, when performing actual scheduling, Talon’s
reserved capacities are limited based on reserved capacity provisioning results determined by
decisions in §7.3, but will utilize available reserved capacity whenever possible.

7.4 Experimental setup

We run simulation experiments using workload from a Cosmos production cluster and transient
resources from Azure to evaluate Talon’s efficacy in minimizing reserved resource commitment.
This section describes how our experiments are set up. We start with providing an overview of
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// Global parameters
Data: resources: Current state of cluster resource availability

1 p: Tunable, placement run time slack
2 t: Tunable, placement resource slack
3 m: Tunable, admission run time slack
4 Function is abundant(resource type) is

Input :resource type: Reserved/transient
Output :True if abundant

5 rot = resources where type == resource type;
6 return rot.idle > rot.alloc / t
7 end
8 Function is long reJob(job) is

Input :job: The incoming job
Output :If job is a predicted-longer recurring job

9 if !is recurring(job) then return False ;
10 return predicted runtime(job) > 3 minutes
11 end
12 Function placement(job) is

Input :job: The job for placement
Output :Pair of <resource type, replica factor>

13 if is long reJob(job) then

14 adv mul =
time job is advanced by
job.pred runtime

;

15 if adv mul > p then return <transient, 1> ;
16 if adv mul > 1/2 —— is abundant(transient) then
17 return <transient, 2>
18 end
19 return <reserved, 1>;
20 else if is abundant(transient) then
21 return <transient, 2>;
22 else
23 return <reserved, 1>;
24 end
25 end
26 Function admission(job) is

Input :job: The job for admission
Output :Whether the job should be admitted

27 if job is ad-hoc ||!is long reJob(job) then return True ;
28 job pl = placement(job);
29 if job pl is reserved then return True ;
30 if is abundant(transient) then return True ;

31 adv mul =
time job is advanced by

predicted runtime(job)
;

32 return adv mul ≤ m
33 end

Algorithm 2: Placement and admission policies.

Cosmos workloads and Azure resources and describing workload and resource traces on which we
use to evaluate on results. We then evaluate the accuracy of our simulator, describe load-shifting
approaches that we compare Talon against, and detail our evaluation metrics and cost models.
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7.4.1 Cosmos, Azure, and our workload

Cosmos, YARN, and gang-scheduling. Cosmos uses YARN [38, 126] to allocate tasks on to its
compute resources, and uses a simple priority-based load-shifting approach. Different from stock
YARN, batch analytics (SCOPE) jobs in Cosmos are scheduled with gang semantics, such that a
job is only started when it is able to acquire a user-provided minimum number of parallel running
containers. We extend our application logic and resource manager to gang-schedule resources. In
addition, each SCOPE job consists of a directed acyclic graph (DAG) of stages, with each stage
consisting of tasks that can run in parallel. We simplify SCOPE jobs used in our experiments to
consist only of a set of linear critical path stages. Should tasks of a stage fail, only the failed tasks
within the stage need to be retried.
Workload description. We use four weeks of Cosmos job and inter-job dependency data to
evaluate our approaches. Talon uses data in the first three weeks to establish job and inter-job
dependency profiles. Experiments are conducted over jobs submitted in the final week. Each day
of traces contains 40k jobs and 160k inter-job dependencies on average.

We evaluate on our results on an entire week’s worth of workload at once rather than as
multiple experiments over multiple days or hours because (1) load-shifting of jobs can potentially
span across days and because (2) capacity-planning requires planning for the peak usage across
longer periods of times. We note that Talon achieves similar results and out-performs compared
approaches in peak minimization over multiple experiments by splitting the workload into multiple
days (2% standard deviation across days).
Inter-job dependencies. While our evaluation considers inter-job dependencies to determine
whether a job is able to start running and whether or not a job is load-shiftable, to allow all jobs to
run to completion in our experiments, we do not fully model inter-job dependency characteristics.
That is, if job jb has a required dependency on upstream job ja, jb will not fail at submission time
even if ja has not completed by then. jb will be delayed until all of its upstream jobs complete
and all of its inputs are available.
Job output consumption and deadline-sensitive jobs. 85% of workload jobs are accessed,
either by a downstream job or by a Cosmos-external user or process, within a week of the job’s
completion. The figure drops to 80% when only looking at output consumption external to
Cosmos where consumption manifests as a download operation in Cosmos’s front end logs. In our
experiments, we primarily focus on SLO attainment from the perspective Cosmos-external systems
and users. We therefore define a deadline-sensitive job as a job whose output has associated
download operations.
Virtual cluster setup. Our experiments assume jobs run in a hybrid “virtual cluster”, where
reserved capacity assume no failure and transient capacity manifest as Harvest VMs rented from
Azure that can be preempted, or reclaimed by Azure at any given moment. The two types of
resources are managed as separate pools by YARN using node labels.
Harvest VM and eviction rates. Talon exploits Harvest VMs, a type of low-cost transient (Spot [3])
VM contract from Azure, to reduce usage of reserved resources and overall reserved capacity.
These VMs are less reliable compared to reserved VMs and can be reclaimed (preempted) by
Azure with little warning. Different from regular Spot VMs, machine resources (compute and
memory) allocated to a Harvest VM can also grow and shrink dynamically over time. Fig. 7.5
shows the time-to-preemption distribution for the Harvest VMs that we use in our workload, while

105



0 21 22 23 24 25 26 27 28 29

Time to preemption (hours)
0.0

0.2

0.4

0.6

0.8

1.0
1 week
1 day
1 hour
CDF

Figure 7.5: Harvest VM time to preemption. This figure shows the time to preemption of Harvest VMs.
Nearly half of all Harvest VMs live for > a day, and more than 10% of Harvest VMs live for > a week.

Fig. 7.6 shows the fluctuation of total available transient resources over time in our experiments.
Nearly 90% of all VMs have an uptime of greater than one hour, and more than 50% of machines
stay up for more than a day. For our experiments, we apply an average of 84% discount to
transient VMs used compared to on-demand reliable VMs, using prices for Spot VMs reported by
Azure [4].

Transient VM traces. We apply resource availability constraints on transient resources in our
experiments, as transient resources are only intermittently available. For our experiments We use
a scaled version of real Harvest VM availability traces from Azure for our experiments such that
the peak of available Harvest VM resources match 80% that of resources consumed by Cosmos.
Considering 2× task replication, load-shifting approaches will be able to use 40% of effective
workload resource-time on average opportunistically on transient resources during stable workload
periods (non ramp up/down). This is similar to what we observe in real Cosmos cluster workloads.
Fig. 7.6 shows the Cosmos workload resource usage, overlapped with the scaled Harvest VM
resource availability traces from azure, that we use for our experiments.

Azure Reserved VM instances. In addition to pay-as-you-go on-demand and Harvest VM [23]
instances, many public clouds today offer Reserved VM instances [2], where users can pay a
discounted price for cloud VMs, provided that users enter a long-term contract with the cloud
provider. The user is charged for the entirety of the contract regardless of rented VM usage.
Our experiments use 3-year contracts, which provide a 61% [4] discount compared to acquiring
reliable VMs on-demand.
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Figure 7.6: Workload traces. This figure shows the normalized resource usage of our workload, along
side a scaled resource availability of Harvest VMs.

7.4.2 Simulation setup

Simulation and preserving workload characteristics. The evaluation of the effectiveness
of Talon to minimize reserved capacity with its load-shifting policies cannot realistically be
attempted on research clusters without significantly changing the characteristics of Cosmos
workloads by either sampling a small subset of jobs submitted, reducing the size of jobs run, or
both. To preserve original workload jobs and their inter-job dependencies, we use and extend the
trace-driven simulator used in the evaluation of Wing [6, 35].
Simulator fidelity. Our simulator preserves fidelity of the original workload, along with inter-job
dependency characteristics, by running real YARN resource management logic locally, only
mocking away the running of real containers, the network communication layer, and calls to wall
clock time. We find that in our simulation running a week of Cosmos workload, the difference
between simulated and real-world job completion times differ within 1.3% of a job’s run time at
the 99th percentile.

7.4.3 Compared load-shifting approaches

This section describes load-shifting approaches that we compare Talon against in our experiments.
TRADITIONAL: Reserved resources only. TRADITIONAL is the normal approach that most use,
using enough reserved capacity to handle the overall peak workload. With TRADITIONAL, there
is no load-shifting, and all submitted jobs are admitted immediately and run on reserved resources.
Workloads scheduled with TRADITIONAL incur no deadline violations, but also requires reserved
capacity that matches the workload peak.
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GHDP: Adapting GreenHadoop. GreenHadoop [55] is a state-of-the-art green-energy-aware
scheduler that looks to match batch-analytics workload to exploit available green energy. Similar
to transient resources, the availability of green energy fluctuates. Green energy can often also be
more cost-effective than its alternative in brown energy. We therefore find that, with adaptations,
deadline and green energy aware schedulers can serve as appropriate comparisons for Talon.

GreenHadoop, at the highest level, performs its scheduling in two steps: (1) it selects machines
to turn on/off based on estimated green energy availability, machine-local job data availability,
and estimated energy demands of running and waiting jobs, and (2) it runs waiting jobs based on
green energy availability in ascending latest job start time order to run on active machines. Latest
job start time here is estimated based on job deadlines and predicted job run times. Jobs that
will violate latest job start time are immediately admitted, potentially running on brown energy if
necessary.

GHDP is our compared implementation of GreenHadoop, adapted to work with reserved and
transient resources, as opposed to brown and green energy. We make the following adaptations
to GreenHadoop: (a) We substitute “energy” with “machine resources” (i.e., virtual cores and
memory), such that green energy corresponds to transient resources, and brown energy corre-
sponds to reserved resources. To account for GreenHadoop’s estimated energy availability, we
use the “current” transient resource availability, updated every scheduling interval (5 seconds), as
an estimation for transient resource availability in the next interval. Our estimation yields a pre-
diction error of 7.3% on average predicting an hour ahead, whereas GreenHadoop’s green energy
prediction yields an error of 12.6% on average [55]. (b) We loosen GreenHadoop restrictions by
not considering machine-local data availability, as a job’s task data is localized from a distributed
file system only upon job start. (c) We provide GreenHadoop with estimates of latest job start
times derived by the Wing pipeline (§7.2.1).

GHDP-R: GHDP with task replication. We also implement GHDP-R as a variation of GHDP
with job task replication. GHDP-R works the same as GHDP, but tasks run on transient resources
run with a replication factor of 2 to improve reliability and account for resource preemption.

GreenHadoop with Talon-guided job advancement. Finally, to see how GreenHadoop performs
with even more opportunities to load-shift jobs, we provide our implementations of GreenHadoop
with load-shifting information and slack provided by Talon’s Analyzer (§7.2), allowing it to
advance recurring job instances. We implement GHDP-R+TAdv and GHDP-R+TAdv as variations
of GHDP and GHDP-R with Talon-guided job advancement, respectively.

Actual scheduling: effectively using reserved resources. Like Talon, GreenHadoop tries to
schedule aggressively on transient resources because transient resources (“green energy”) cost
less, which yields reserved capacity savings during provisioning phase, but will incur more cost
during actual scheduling, as reserved resources are already paid-for. We therefore also enhance
variants of GreenHadoop with actual scheduling modes similar to that described in §7.3.3 that
fully use reserved resources when available. In our evaluations, approaches’ reserved capacities
are limited based on that determined in its provisioning phase, while deadline violations are
determined based on actual scheduling results (§7.1.3).

108



7.4.4 Evaluation metrics and cost models

The goal of Talon is to minimize the peak workload run on reserved resources while minimizing
job deadline violations. We consider three cost models (CMs) to evaluate the effect of Talon’s
reserved workload peak minimization on overall cost. The amount of job deadline violations
incurred is an evaluation metric for all CMs.

CM1: Reserved peak workload minimization. CM1 takes a straightforward look at reserved
peak workload minimization. In CM1, we consider the scenario in which reserved capacity is
much more expensive and requires much more commitment compared to alternatives, such that
minimizing reserved resource capacity is of primary concern to the user. Here, reserved capacity
can be interpreted as on-premise locally managed machines (e.g., Cosmos today), guaranteed
workload capacity in a shared cluster (e.g., hierarchical queues in YARN [7]), or higher cost
reserved VM instances in the cloud. We consider the amount of reserved capacity committed as
the target for “cost reduction.”

CM2: Reserved contracts in public cloud. CM2 considers a public cloud scenario, where
reserved capacity represents VMs in the cloud rented as reserved VM instances [2] (§7.4.1) under
long, three-year contracts. The cost to minimize here is the monetary cost required to complete
the workload.

CM3: Pay-as-you-go contracts in public cloud. CM3 similarly considers minimizing monetary
cost in a public cloud scenario, but in CM3, reserved resources are rented under pay-as-you-go
contracts. i.e., in CM3, resources, both reserved and transient, are rented only for the period of
time during which they are being utilized by job tasks, such that Talon’s peak reduction is not as
important as in CM1 and CM2.

7.5 Experimental results

This section describes our experimental results evaluating the efficacy of each compared load-
shifting approach, using a week’s worth of Cosmos workload, on the three cost models described
in §7.4.4.

Takeaway. Talon effectively minimizes reserved resource peak without sacrificing job SLO
attainment, Talon requires only 62% of reserved capacity relative to TRADITIONAL, and only
incurs deadline violations on 0.004% of deadline-sensitive jobs in our workload (CM1). Talon is
also adept at lowering the cost of executing jobs when only using resources rented from the public
cloud, reducing overall cost by 31% compared to running the workload exclusively on reserved
VMs (CM2). Finally, Talon reduces cost by 33% when scheduling entirely using VMs under
pay-as-you-go contracts, where its judicious use of transient resources allows it to incur minimal
number of deadline violations, violating the deadlines of only 0.005% of deadline-sensitive jobs
in our workload, incurring the least job deadline violations out of all evaluated load-shifting
approaches (CM3).

109



7.5.1 Talon vs state-of-the-art

This section compares the performance of Talon under each cost model (§7.4.4) against TRADI-
TIONAL, and variations of GHDP (§7.4.3), on our week-long Cosmos workload.

CM1: Reserved peak workload minimization

First, we discuss how well Talon can minimize peak workload run on reserved resources (CM1).
Here, we focus on how well each approach can minimize peak workload run on reserved resources
and deadline violations incurred. Fig. 7.7 shows the effectiveness of each approach under CM1
relative to TRADITIONAL.
Comparison against TRADITIONAL. TRADITIONAL, being the normal approach used by most
that schedules everything on reserved machines, is able to complete all jobs without violating any
deadlines, but also uses the most reserved resources at its workload peak. Talon’s peak reserved
resource usage is 62% that of TRADITIONAL, while only violating 0.004% of job deadlines.
Comparison against GHDP. We find that GHDP is adept at minimizing peak reserved resource
usage, attaining a peak of 50% relative to that of TRADITIONAL, compared to Talon at 62%. This
is because GHDP runs without any task replication, and thus can run significant portions of its
workload on transient resources. However, this comes with a significant caveat, as GHDP violates
the deadlines of 0.59% of deadline-sensitive jobs. These deadline violations were mainly caused
by task preemptions and retries, and are worsened with inter-dependent jobs, as late upstream
jobs can cause a chain of downstream jobs to violate their deadlines.
Comparison against GHDP-R. GHDP-R significantly reduces the number of GHDP job deadline
violations by replicating tasks run on transient resources, yielding a job deadline violation
rate of 0.02%. However, this comes with the caveat that GHDP’s ability to minimize peak
reserved workload is also reduced. GHDP-R attains a reserved resource peak of 73% relative to
TRADITIONAL.
Comparison against GHDP-R+TAdv and GHDP-R+TAdv. We provide GHDP and GHDP-R
with Talon’s job advancement guidance to see how much benefit additional load-shifting flexibility
brings. GHDP-R+TAdv (Talon advancement guided GHDP) reduces reserved resource usage
peak compared to GHDP, attaining a peak of 41% relative to that of TRADITIONAL. While
improved due to job advancement opportunities, GHDP-R+TAdv still violates the deadlines of
0.5% of deadline-sensitive jobs. Task preemptions and retries are still the main cause of deadline
violations in GHDP-R+TAdv, as GHDP-R+TAdv runs without task replication.

On the other hand, we do not see as much improvement when providing GHDP-R with Talon’s
job advancement guidance in GHDP-R+TAdv. GHDP-R+TAdv attains a reserved resource usage
peak of 71% relative to TRADITIONAL, a 2% reduction from GHDP-R, and still yields a low
deadline violation rate of 0.018%.

Examining why providing Talon’s job advancement guidance does not yield much benefit to
GHDP-R+TAdv in reserved peak reduction in its provisioning planning phase, we found that
while compared to Talon, GHDP-R+TAdv’s job admission and placement policies are much
more aggressive in admitting advanced jobs, it often cannot fully take advantage of it. Indeed,
GHDP-R+TAdv’s aggressive placement and admission policies tries to take advantage of any
immediately available transient resource, even when reserved workload is low. This in turn leads
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Figure 7.7: Comparison against state-of-the-art (CM1). This figure shows the performance of Talon
against compared scheduling policies (§7.4.3). Blue bars represent reserved resource peak relative to
TRADITIONAL (y-axis to the left) and red bars represent job deadline violation rate (y-axis to the right).
Lower is better for both types of bars. TRADITIONAL’s peak is 100% relative to itself and achieves 0
deadline violations. GHDP and GHDP-R+TAdv attain lower peaks vs Talon, but also incurs more job
deadline violations. Task replication (GHDP-R and GHDP-R+TAdv) on transient resources significantly
reduces deadline violations, but incurs higher reserved resource peak. Talon balances reserved resource
peak minimization with SLO attainment.

to high transient resource utilization by non-advanced jobs, which unintentionally reduces the
amount of job resource-time that GHDP-R+TAdv can load-shift off of workload peaks. GHDP-
R+TAdv only load-shifts 7% of all job resource-time by more than 15 minutes, compared to Talon
at 35%, in the provision planning phase.

Both GHDP-R+TAdv and Talon use available transient resources to determine if jobs can be
advanced in their provision planning phases. Talon, with its judicious use of transient resources
such as by purposefully placing some ad-hoc jobs on reserved resources and by taking advantage
of running advanced jobs with long deadline-slacks on transient resources without task replication,
leaves resources on the table for admitting more advanced jobs.

CM2: Reserved contracts in public cloud

Here, we discuss how Talon reduces monetary cost running entirely on resources rented from a
public cloud (e.g., Azure), using Reserved VM instances [2] as long-term reserved capacity (CM2).
Our experiments use 3-year Reserved VM (costing 39% vs on-demand) and Harvest VM (costing
16% vs on-demand) instances. Costs were computed using average monthly costs across all VM
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Figure 7.8: Costs of using reserved contracts in Azure (CM2). This figure shows the costs and job
deadline violation rates of compared policies operating using Reserved VMs and Harvest VMs in Azure as
reserved and transient resources, respectively. We find that cost results are consistent to that observed in
CM1: GHDP incurs the least cost but the most deadline violations, GHDP-R reduces the deadline violations
of GHDP at more cost, while Talon strikes a balance between both, costing 31% less than TRADITIONAL

while maintaining a low number of deadline violations.

types, as reported by Azure [4].
Fig. 7.8 shows how TRADITIONAL, GHDP, GHDP-R, and Talon perform in CM2. What

we observe in CM2 is consistent with what we observe in CM1. We find that Talon is able to
complete the workload with lower cost compared to GHDP-R as Talon’s capacity planning was
tighter, allowing effective usage of reserved resources: Talon costs 69% that of TRADITIONAL,
out-performing GHDP-R, which costs 76% that of TRADITIONAL. While GHDP incurs the
lowest cost, costing only 55% of TRADITIONAL, it incurs more deadline violations compared to
strategies that utilize task replicas such as Talon and GHDP-R.

Note that in both CM1 and CM2 we assume right-sized reserved capacity planning from the
provisioning phase, and that allocating insufficient reserved capacity can lead to more job deadline
violations, as resource requests may be queued. We study the sensitivity of reserved capacity
planning on Talon in the actual scheduling phase in §7.5.3.

CM3: Pay-as-you-go contracts in public cloud

Here, we discuss how Talon performs in monetary cost when exclusively using resources under
pay-as-you-go contracts. In CM3, we use the same load-shifting approach as we do in Talon’s
provisioning phase and do not try to use as many reliable resources as we do in in actual scheduling,
as these resources are now pay-as-you-go and are charged significantly more compared to reserved
and transient resources.

Fig. 7.9 shows each compared approach’s performance in CM3, normalized to the cost of
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Figure 7.9: Costs of using pay-as-you-go contracts in Azure (CM3). This figure shows the costs and job
deadline violation rates of compared policies using On-Demand reliable VMs and Harvest VMs in Azure
as “reserved” and transient resources, respectively. While Talon under-performs GHDP-R other policies in
cost under CM3, it robustly handles bulk transient resource preemptions, allowing it to achieve lower rates
of job deadline violations.

TRADITIONAL. While Talon in CM3 still reduces cost relative to TRADITIONAL, costing 67%
that of TRADITIONAL, we found that Talon costs more compared to other CM3 approaches.
GHDP only costs 27% and GHDP-R only costs 63% that of TRADITIONAL. This is because
compared to GHDP and GHDP-R, Talon uses more reserved resource-time and less transient
resource-time overall, as it tries to leave enough of a transient resource buffer to handle retry
storms upon bulk resource preemptions. On the other hand, without a pre-determined amount
of reliable resources that “soak-up” workload (e.g., in CM1 and CM2) GHDP and GHDP-R use
transient resources much more aggressively, scheduling tasks on transient resources whenever
they become available. We observe that in our execution traces of CM3, the GHDP and GHDP-R
often exhaust all available transient resources, such that excessive queueing of unfulfilled retry
requests happen during bulk preemptions. Indeed, this aggressive usage of transient resources
cause GHDP and GHDP-R to be significantly impacted by bulk transient resource preemptions:
GHDP and GHDP-R incur a 0.96% and 0.61% deadline violation rate, respectively. Talon robustly
handles bulk preemptions, incurring only a 0.005% deadline violation rate, while only costing 4%
of TRADITIONAL’s cost more compared to GHDP-R.

7.5.2 Attribution of benefits
This section attributes the benefits of features of Talon by following a series of design progressions,
evaluating each compared approach’s effectiveness in minimizing reserved resource commitment
and job deadline violation rates (shown in Fig. 7.10).
Progression: REP, a simple replica approach. REP represents the replica approach to schedul-
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Figure 7.10: Progression results. This figure shows the progression of features we evaluate that lead
us to Talon. REP, a load-shifting approach that runs jobs on transient resources with replicas, incurs a
higher reserved resource usage peak. Enhancing REP with the ability to delay jobs (REP+delay) does
not help much to reduce reserved resource capacity, as opportunities to delay jobs are limited (§7.2.4).
Talon’s exploitation of job advancement opportunities reduces reserved resource commitment to 62% that
of TRADITIONAL.

ing jobs, in which jobs are submitted on their original schedule. REP also also tries to run jobs on
transient resources with replicas when transient resources are available: When jobs start, REP
queries the resource manager for the availability of transient resources. If there is enough resources
to run all of the job’s tasks with replicas, the job requests transient resources; otherwise, the job
requests reserved resources. REP achieves a reserved resource peak 74% that of TRADITIONAL,
and incurs 0.02% of job deadline violations.
Progression: REP+delay, REP with job delays. While REP performs reasonably well just by
using transient resources to reduce the amount reserved resource committed, we wanted to see if
the conventional method of load-shifting by delaying jobs based on deadline and job run time
information can help further reduce reserved resource peaks. We thus introduce REP+delay, a
load-shifting policy that, in addition to running jobs on transient resources with replicas, prioritizes
and delays jobs based on their estimated slack when there are not enough transient resources
to run the whole job (similar to GHDP-R). We provide REP+delay with perfect job run time
and deadline information, but we find that delaying jobs did not help much, reducing reserved
resources only by 2% while incurring slightly more job deadline violations. This confirms our
earlier hypothesis that job delays do not provide much opportunity (§7.2.4). Indeed, GHDP-R,
which uses a similar approach to REP+delay, performs similarly when only considering job
delays.
Progression: Talon. In analyzing inter-job dependencies, we find that many future-arriving
recurring jobs are predictable based on input availability, and that there exists significant gap in
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many jobs between when their inputs are available and when the jobs are submitted. We develop
Talon to exploit this opportunity, advancing jobs to when transient resources are abundant to
reduce reliance on reserved resources. Talon achieves a reserved resource usage peak at 62% that
of TRADITIONAL, and achieves a low amount of job deadline violations. As an added bonus,
since Talon is more careful in its transient resource usage as to not trigger retry storms during bulk
preemptions, it also incurs significantly lower job deadline violation rates (0.005% job deadlines
violated) compared to other load-shifting policies in CM3.

7.5.3 Sensitivity analyses
This section describes sensitivity analyses of the various tunable parameters in Talon’s policies.

Sensitivity of tunable knobs on CM1

We perform sensitivity analyses on the tunable knobs available in Talon’s policies. Fig. 7.11 shows
the effects of the tunable resource slack (t) and run time slack (p) parameters on reserved workload
peak reduction. Our discussion in this section will focus on the provision planning phase of Talon,
as deadline violation rates are less than 0.02% across all CM1 sensitivity experiments. For all
values of t and p, Talon out-performs its variants (REP-TP and REP-TP+TAdv) and GHDP-R in
reserved workload peak reduction, while incurring little deadline violations. Our primary results
in §7.5.1 and §7.5.2 set t = 2 and p = 1.
Varying resource slack (t). The resource slack parameter (t) affects both admission and placement
policies. The larger the resource slack, the more advanced jobs admitted, and the more likely jobs
are run with replicas on transient resources.

On our evaluated Cosmos workload, keeping p constant, across evaluated values of p, using
t = 2 and t = 3 minimizes reserved resource usage peaks. With t = 1, we find that Talon tends
to be too conservative, preferring to run jobs on reserved resources and does not take enough
advantage of load-shifting. Indeed, t = 1 often incurs the least deadline violations, keeping p
constant. On the other hand, with t = 4, Talon can be too aggressive with advancing jobs and
running them on transient resources, leading to jobs being advanced to periods where workload is
generally busier.
Varying placement run time slack (p). The run time slack p affects whether an advanced job
determined to run on transient resources should run with replicas. The larger p is, the more likely
it is that the job should run with replicas.

In our evaluated workload, we find that for fixed t’s, the larger p is, the higher the reserved
resource usage peak. This is because for advanced jobs, using a larger p value introduces more
transient resource competition, leading to more jobs that arrive later being run on reserved
resources. Values of smaller p, however, also introduces more deadline violations, as more jobs
are set to run without replicas.

We find that setting p = 1 strikes a good balance between taking risks to minimize reserved
resource peak usage and maintaining low numbers of job deadline violations. Using p = 1 allows
jobs advanced by more than its run time to run without task replicas, such that even if its tasks
were preempted, it would have ample time to finish its execution. By contrast, if p is set to 0.5,
jobs would have a higher chance of violating their deadlines should its tasks get preempted.
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Figure 7.11: Sensitivity of results to Talon parameters. This figure explores how Talon’s tunable
parameters t and p affect reserved resource usage peak relative to that of TRADITIONAL. Lighter colors
(lower value) are better. The gold-outlined box (t = 2 and p = 1) refer to our primary experiment settings.
Keeping p constant, setting t = 2 and t = 3 yield the highest reliable resource peak reduction. Keeping t
constant, a lower p yields lower peaks.

Varying admission run time slack (m). Keeping resource slack (t) and placement run time slack
(p) constant, varying admission run time slack (m) yielded up to a 2% difference in reserved
resource peak usage, for evaluated values of m > p (m and p ∈ {0.5, 1, 2, 3}). m should be set to
values higher than p, as setting it to values less than or equal to p will not allow Talon’s placement
policy to opportunistically schedule advanced jobs with long deadline slack without task replicas,
thereby increasing reserved resource peak usage (up to a 6% difference).

Sensitivity of reserved capacity on actual scheduling

Careful capacity planning is necessary to optimize for actual scheduling. If not enough reserved
capacity is planned, load-shifting approaches can incur extra job deadline violations, as job
resource requests will be queued due to insufficient resources. We study the sensitivity of capacity
planning on job deadline violations with Talon. The right-sized reserved capacity for Talon is at
62% of TRADITIONAL (§7.5.1). If we allocate only 95% of the right-sized capacity, we find that
Talon’s job deadline violation rate increases from 0.004% to 0.01%. If we allocate 90% of the
right-sized capacity, Talon’s job deadline violation rate further increases to 0.03%. If we further
allocate less capacity at 80%, Talon’s job deadline violation rate increases to 0.17%.
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Our results find Talon to be robust to incorrect capacity planning, largely due to its ability to
(1) reduce workload peaks by advancing jobs, (2) advance jobs to times when resource contention
is scarce, and (3) reliably run advanced jobs without replicas on transient resources, reducing
contention of both reserved and transient resources for other jobs.

7.6 Related work

Cluster workload analysis. Much work has been done to study cluster workloads of various
types [24, 36, 63, 107]. One particular area of study within cluster workload analyses is in job run
time prediction [44, 66]. An idea often used in literature is to use historical similar/recurring job
runs to predict future job run times [37, 105, 118, 124, 125]. Our work leverages history-based
recurring job run time prediction techniques to provide Talon with job run time predictions.

Different from prior work, our work on Talon considers jobs which consider cluster jobs
independent of one another. Our work uses the analyses from Wing [35] to uncover inter-job
dependencies. From there, Talon identifies and exploit recurring jobs that can be load-shifted due
to the slack between when jobs’ inputs are available and when jobs are actually submitted, and
sheds light on the significant opportunity available in job load-shiftability.
Workflow managers [73, 97, 98] for batch analytics jobs have been widely studied and deployed
throughout industry. However, workflow managers today depend on users to manually specify
inter-job dependencies between jobs in a workflow, while Talon infers inter-job dependencies
from historical job and data provenance logs. Furthermore, Talon allows users and cluster resource
operators to save on cost by selectively running load-shiftable workloads off-peak and on cost-
effective resources, while working in-tandem with the cluster resource manager to ensure that
jobs do not violate their deadlines.
Cluster scheduling is an area of research that has enjoyed a long history of study, and work has
been done to support general batch analytics, low-latency, interactive jobs, streaming jobs, and
mixed workloads thereof. [29, 51, 52, 53, 54, 60, 78, 101, 103, 110, 125, 127] However, different
from most prior work, which assume that jobs run independently of one another, Talon exploits
the inter-job dependencies between submitted jobs for effective load-shifting.
Load-shifting and green-energy-aware scheduling. A particularly relevant area of cluster
scheduling lies in green-energy-aware job scheduling. These schedulers load-shift jobs in order to
match job energy consumption with the availability of green energy (e.g., solar or wind energy).
However, we find that many of these schedulers require accurate user-provided information on job
run times and/or job load-shiftability [22, 55, 56, 83, 84, 86]. We have adapted GreenHadoop [55]
as a baseline for comparison against Talon (§7.4.3), and shown that Talon is more effective at both
reducing peak reserved resources used and attaining lower numbers of job deadline violations.
Transient resources: offerings and usage. Transient resources such as Spot VMs [3] and Harvest
VMs [23, 130] are often offered at a discount compared to regular VMs by cloud service providers
to increase data center utilization. Many prior work have been proposed to take advantage of these
lower-cost offerings to reduce the overall cost of executing their respective workloads, including
in areas of batch analytics [33, 117, 133], machine learning model training [67], and long-running
services [68]. We consider our work in Talon complementary to prior work in this area, as Talon
mainly focuses on using load-shifting and transient resources to reduce peak reserved resource
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usage.
Systems using data provenance. There has also been prior work that collects [39, 96] and
exploits provenance to improve batch data analytics computation [62, 76]. Our work is similarly
exploits job data provenance, but focuses on using the information to load-shift jobs.
Inter-job dependency aware frameworks. Our work extends upon a series of prior work in
inter-job dependency analyses. Owl [34] is a tool that helps users visualize inter-job dependency
characteristics of their jobs, while Guider [96] and Wing [35] propose and realize the idea
of scheduling to maximize job utility attainment based on inter-job dependency awareness,
respectively. Talon uses historical inter-job dependencies to derive job load-shiftability, and
exploits transient resources to reliably load-shift jobs to reduce cluster peak resource demand
while minimizing job deadline violations.

7.7 Summary
Talon effectively lowers long-term reserved resource capacity needed to run workloads by ex-
ploiting job load-shifting via inter-job dependencies. Considering load-shifting in-tandem with
intermittently available transient resources allows Talon to more reliably execute jobs with low
impact on cluster resource usage and job deadline violations. Our experiments find that Talon
can reduce reserved resource commitment by up to 38% compared to the traditional approach
of reserving resources based on workload peak, while experiencing only minimal job deadline
violations.
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Chapter 8

Conclusion and future directions

8.1 Conclusion

This dissertation demonstrates that value-realized in shared data environments can be improved
both by cost- and heterogeneity-aware applications from users and by value- and dependency-
aware resource management systems from cluster operators by presenting four case study systems:
two in user applications, and two in dependency-aware resource management systems.

In user applications, we presented Tributary, an elastic control system that allows users to
realize more value in long-running elastic cloud services with latency SLO targets by enabling
these services to reliably use low-cost, transient cloud resources. Tributary does so by creating
models of transient resource preemption likelihood and exploiting low correlation between
different transient resource pools, allocating resources from diverse pools to mitigate preemption
risk and to satisfy application SLO requirements. Our experiments show that Tributary reduces
cost for achieving a given SLO by 81-86% compared to scaling on non-preemptible resources,
and by 47-62% compared to alternative approaches of the same scaling with transient resources.

Tackling another class of user applications in batch data analytics, we presented Stratus,
a cost-aware virtual cluster scheduler that allows users to attain more value by reducing cost.
Different from prior schedulers, Stratus focuses on the fact that cloud resources are continuously
charged-for while allocated. It therefore tries to minimize cost by attempting to fully utilize
resources while they are allocated, using job runtime predictions as guidance. Our simulation
experiments on Google and TwoSigma cluster traces show that Stratus can reduce cost by 17-44%
compared to state-of-the-art approaches in virtual cluster scheduling.

In dependency-aware resource management systems, we first presented Wing. In Wing, we
found that inter-job dependencies widely pervade today’s shared data clusters, yet are often
not considered in resource management. The Wing dependency profiler analyzes job and data
provenance logs to expose inter-job dependencies, characterizes them, and provides guidance to
cluster schedulers to effectively prioritize the most impactful recurring jobs. In simulations driven
by logs from a Cosmos cluster, we find that a traditional YARN scheduler that uses Wing-provided
valuations in place of user-specified priorities extracts more value from a heavily-constrained
cluster.

We further delved into opportunities to reduce cluster operating costs by presenting Talon.
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Talon exploits job load-shifting with inter-job dependencies in-tandem with intermittently available
transient resources to minimize long-term cluster resource commitment in shared cluster capacity
planning. Our experiments find that Talon can reduce reserved resource commitment by up to
38% compared to the traditional approach of reserving resources based on workload peak, while
experiencing only minimal job deadline violations.

8.2 Future directions

This section describes several directions of future research that extends upon work presented in
this dissertation.

8.2.1 Cost-efficient resource acquisition mixed job types
This dissertation presented Tributary, which optimizes for cost and reliability of long-lived, latency
sensitive, and elastic cloud services. It also introduced Stratus, which specializes in lowering the
cost of shorter-running batch analytics jobs. An interesting future research direction is to design a
scheduler/resource acquisition scheme that is capable of lowering cost across multiple different
application types.

8.2.2 Dynamic dependency-aware value scheduling
The value scheduling policy proposed by Wing is a simple one that translates recurring aggregate
downstream value impact in to a static priority assignment. While we found that this is effective
and sufficient in the use-case of Cosmos due to the Zipfian nature of our job value distribution,
it may not work as well for other shared computing environments or for other metrics of job
value/utility (§8.2.3). In these cases, we may need a value scheduler that is aware of dynamic
dependency changes, updating the value of jobs as their downstream dependencies come-and-go.
A more sophisticated and effective version of such a scheduler could plan ahead and reserve
resources for high-value downstream jobs that have high probabilities of arriving in the future.

8.2.3 Better metrics for job value/utility
The search for a good proxy-metric for job value has been a long-standing topic of research in
scheduling. While Wing in this dissertation proposes to use job output download as a proxy-metric
for the value jobs, which may work in certain contexts (e.g., output dataset popularity ranking), it
is still an imperfect proxy-metric. For example, output downloads by certain users may outweigh
the output downloads of other users (e.g., the output download by the CEO of Microsoft will
likely be more financially impactful than the output download of a researcher running ad-hoc
experiments). It is also difficult to place or measure value on the impact of jobs that are monitored
but whose outputs are never downloaded (e.g., cluster canary jobs), ad-hoc jobs that may lead to
important financial decisions, and the output of jobs that is only downloaded once but cached and
reused elsewhere. This dissertation therefore leaves better metrics for job value as an important
subject for future research.
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8.2.4 Better predictions of time-to-output usage
While Wing can predict the arrival of a downstream recurring job fairly reliably (§6.1), in Talon,
we found that it is difficult to predict when the output of a recurring job will first be consumed,
either by a user or by downstream jobs (§7.2.4). Indeed, even predicting the minimum historical
time to output usage, our predictor still over-predicts for 2% of recurring jobs, which is why in
Talon we opted to not actively delay recurring jobs. Historical time-to-output-downloads may
therefore not be sufficient here for accurate predictions, and additional job submission context
and potentially input from users may be required. An accurate prediction of time-to-output usage
can significantly increase the load-shiftability of jobs, while decreasing the number of output
violations, for decisions made by a load-shifting scheduler.

8.2.5 Other cost-aware load-shifting applications
In Talon, we focused on reducing cost by reducing reserved resource commitment, and examined
three cost models in total. Two cost models benefit from using Talon to reduce the peak reserved
resource workload, but using Talon in the third cost model, which measures the cost of running a
week-long workload from a Cosmos cluster entirely using pay-as-you-go resources, costs more
compared to other load-shifting approaches. A direction for future research is to apply load-
shifting principles discussed in Talon (i.e., with inter-job dependency information) to reduce cost
in other cost-aware load-shifting applications. These applications include load-shifting to reduce
costs by exploit fluctuating prices in pay-as-you-go resources (e.g., Spot VMs) and load-shifting
to better take advantage of environmentally friendly but intermittently available green energy.
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[23] Pradeep Ambati, Iñigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan, Brian
Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura, and
Ricardo Bianchini. Providing SLOs for Resource-Harvesting VMs in Cloud Platforms.
OSDI ’20. USENIX Association, USA, 2020. ISBN 978-1-939133-19-9.

[24] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson, Elisabeth
Baseman, and Nathan DeBardeleben. On the diversity of cluster workloads and its impact
on research results. In Proceedings of the 2018 USENIX Annual Technical Conference,
USENIX ATC ’18. USENIX Association, 2018. URL https://www.usenix.org/
conference/atc18/presentation/amvrosiadis.

[25] Anton Beloglazov and Rajkumar Buyya. Adaptive threshold-based approach for energy-
efficient consolidation of virtual machines in cloud data centers. In Proceedings of the
8th International Workshop on Middleware for Grids, Clouds and e-Science, MGC ’10.
ACM, 2010. ISBN 978-1-4503-0453-5. doi: 10.1145/1890799.1890803. URL http:
//doi.acm.org/10.1145/1890799.1890803.

[26] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurrency and Computation : Practice and Experience,
24(13), September 2012. ISSN 1532-0626. doi: 10.1002/cpe.1867. URL http://dx.
doi.org/10.1002/cpe.1867.

[27] Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande, Aaron J Elmore,
Samuel Madden, and Aditya G Parameswaran. Datahub: Collaborative data science &
dataset version management at scale. In Proceedings of the 7th Biennial Conference on
Innovative Data Systems Research, CIDR ’15, January 2015.

124

https://github.com/spotify/luigi
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1145/2509413.2509416
https://doi.org/10.1145/2039252.2039257
https://doi.org/10.1145/2039252.2039257
https://www.usenix.org/conference/atc18/presentation/amvrosiadis
https://www.usenix.org/conference/atc18/presentation/amvrosiadis
http://doi.acm.org/10.1145/1890799.1890803
http://doi.acm.org/10.1145/1890799.1890803
http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.1002/cpe.1867


[28] Luiz Fernando Bittencourt and Edmundo Roberto Mauro Madeira. HCOC: a cost
optimization algorithm for workflow scheduling in hybrid clouds. Journal of Inter-
net Services and Applications, 2(3), 2011. doi: 10.1007/s13174-011-0032-0. URL
https://doi.org/10.1007/s13174-011-0032-0.

[29] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, Ming
Wu, and Lidong Zhou. Apollo: Scalable and coordinated scheduling for cloud-scale
computing. In Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’14. USENIX Association, 2014. ISBN 978-1-931971-16-4.
URL http://dl.acm.org/citation.cfm?id=2685048.2685071.

[30] Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill Ramsey, Darren Shakib, Simon Weaver,
and Jingren Zhou. SCOPE: Easy and efficient parallel processing of massive data sets.
Proceedings of the VLDB Endowment, 1(2), August 2008. ISSN 2150-8097. doi: 10.14778/
1454159.1454166. URL http://dx.doi.org/10.14778/1454159.1454166.

[31] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. Failure Analysis of Jobs in Compute
Clouds: A Google Cluster Case Study. In Proceedings of the 25th International Symposium
on Software Reliability Engineering, ISSRE ’14. IEEE Computer Society, Nov 2014. doi:
10.1109/ISSRE.2014.34.

[32] Brent N. Chun and David E. Culler. User-Centric Performance Analysis of Market-Based
Cluster Batch Schedulers. In Proceedings of the 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid, CCGRID ’02. IEEE Computer Society, May 2002.
ISBN 0769515827.

[33] Andrew Chung, Jun Woo Park, and Gregory R. Ganger. Stratus: Cost-aware Container
Scheduling in the Public Cloud. In Proceedings of the 9th ACM Symposium on Cloud
Computing, SoCC ’18. ACM, 2018. ISBN 978-1-4503-6011-1. doi: 10.1145/3267809.
3267819. URL http://doi.acm.org/10.1145/3267809.3267819.

[34] Andrew Chung, Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Panagiotis Gare-
falakis, and Gregory R. Ganger. Peering Through the Dark: An Owl’s View of Inter-job
Dependencies and Jobs’ Impact in Shared Clusters. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19. ACM, 2019. ISBN 978-1-4503-5643-5.
doi: 10.1145/3299869.3320239. URL http://doi.acm.org/10.1145/3299869.
3320239.

[35] Andrew Chung, Subru Krishnan, Konstantinos Karanasos, Carlo Curino, and Gregory R.
Ganger. Unearthing inter-job dependencies for better cluster scheduling. In Proceed-
ings of the 14th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’20. USENIX Association, November 2020. URL https://www.usenix.org/
conference/osdi20/presentation/chung.

[36] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ri-
cardo Bianchini. Resource Central: Understanding and Predicting Workloads for Improved
Resource Management in Large Cloud Platforms. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17. ACM, 2017. ISBN 978-1-4503-5085-3.
doi: 10.1145/3132747.3132772. URL http://doi.acm.org/10.1145/3132747.

125

https://doi.org/10.1007/s13174-011-0032-0
http://dl.acm.org/citation.cfm?id=2685048.2685071
http://dx.doi.org/10.14778/1454159.1454166
http://doi.acm.org/10.1145/3267809.3267819
http://doi.acm.org/10.1145/3299869.3320239
http://doi.acm.org/10.1145/3299869.3320239
https://www.usenix.org/conference/osdi20/presentation/chung
https://www.usenix.org/conference/osdi20/presentation/chung
http://doi.acm.org/10.1145/3132747.3132772
http://doi.acm.org/10.1145/3132747.3132772
http://doi.acm.org/10.1145/3132747.3132772


3132772.

[37] Carlo Curino, Djellel E. Difallah, Chris Douglas, Subru Krishnan, Raghu Ramakrishnan,
and Sriram Rao. Reservation-based Scheduling: If You’Re Late Don’T Blame Us! In
Proceedings of the ACM Symposium on Cloud Computing, SoCC ’14. ACM, 2014. ISBN
978-1-4503-3252-1. doi: 10.1145/2670979.2670981. URL http://doi.acm.org/
10.1145/2670979.2670981.

[38] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao, Giovanni M. Fu-
marola, Botong Huang, Kishore Chaliparambil, Arun Suresh, Young Chen, Solom Heddaya,
Roni Burd, Sarvesh Sakalanaga, Chris Douglas, Bill Ramsey, and Raghu Ramakrishnan.
Hydra: a federated resource manager for data-center scale analytics. In Proceedings of
the 16th USENIX Symposium on Networked Systems Design and Implementation, NSDI
’19. USENIX Association, February 2019. ISBN 978-1-931971-49-2. URL https:
//www.usenix.org/conference/nsdi19/presentation/curino.

[39] Sergio Manuel Serra da Cruz, Patricia M. Barros, Paulo Mascarello Bisch, Maria
Luiza Machado Campos, and Marta Mattoso. Provenance Services for Distributed Work-
flows. In Proceedings of the 8th IEEE International Symposium on Cluster Computing and
the Grid, CCGRID ’08. IEEE Computer Society, 2008.

[40] Peter Danzig, Jeff Mogul, Vern Paxson, and Mike Schwartz. The internet traffic archive.
URL: http://ita.ee.lbl.gov/, 2000.

[41] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proceedings of the 6th USENIX Conference on Operating Systems Design and
Implementation, OSDI ’04. USENIX Association, 2004.

[42] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy Zwaenepoel. Hawk:
Hybrid Datacenter Scheduling. In Proceedings of the 2015 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’15. USENIX Association, 2015. ISBN
978-1-931971-225. URL http://dl.acm.org/citation.cfm?id=2813767.
2813804.

[43] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel. Kairos: Preemptive
Data Center Scheduling Without Runtime Estimates. In Proceedings of the 9th ACM
Symposium on Cloud Computing, SoCC ’18. ACM, 2018. ISBN 978-1-4503-6011-1.
doi: 10.1145/3267809.3267838. URL http://doi.acm.org/10.1145/3267809.
3267838.

[44] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware
cluster management. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’14. ACM, 2014.
ISBN 9781450323055. doi: 10.1145/2541940.2541941. URL https://doi.org/10.
1145/2541940.2541941.

[45] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-optimal scheduling
in hybrid iaas clouds for deadline constrained workloads. In IEEE International Conference
on Cloud Computing, CLOUD ’10. IEEE Computer Society, 2010. doi: 10.1109/CLOUD.
2010.58. URL https://doi.org/10.1109/CLOUD.2010.58.

126

http://doi.acm.org/10.1145/3132747.3132772
http://doi.acm.org/10.1145/3132747.3132772
http://doi.acm.org/10.1145/3132747.3132772
http://doi.acm.org/10.1145/2670979.2670981
http://doi.acm.org/10.1145/2670979.2670981
https://www.usenix.org/conference/nsdi19/presentation/curino
https://www.usenix.org/conference/nsdi19/presentation/curino
http://dl.acm.org/citation.cfm?id=2813767.2813804
http://dl.acm.org/citation.cfm?id=2813767.2813804
http://doi.acm.org/10.1145/3267809.3267838
http://doi.acm.org/10.1145/3267809.3267838
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1109/CLOUD.2010.58


[46] Nosayba El-Sayed, Hongyu Zhu, and Bianca Schroeder. Learning from Failure Across
Multiple Clusters: A Trace-Driven Approach to Understanding, Predicting, and Mitigating
Job Terminations. In Proceedings of the IEEE 37th International Conference on Distributed
Computing Systems, ICDCS ’17. IEEE Computer Society, June 2017. doi: 10.1109/ICDCS.
2017.317.

[47] Dror G Feitelson. Workload modeling for computer systems performance evaluation.
Cambridge University Press, 2015.

[48] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo Fonseca.
Jockey: Guaranteed Job Latency in Data Parallel Clusters. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys ’12. ACM, 2012. ISBN 978-1-4503-
1223-3. doi: 10.1145/2168836.2168847. URL http://doi.acm.org/10.1145/
2168836.2168847.

[49] Guilherme Galante and Luis Carlos E. de Bona. A survey on cloud computing elasticity. In
Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud
Computing, UCC ’12, Washington, DC, USA, 2012. IEEE Computer Society. ISBN 978-
0-7695-4862-3. doi: 10.1109/UCC.2012.30. URL http://dx.doi.org/10.1109/
UCC.2012.30.

[50] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch. Au-
toscale: Dynamic, robust capacity management for multi-tier data centers. ACM Trans-
actions on Compututer Systems, 30(4), November 2012. ISSN 0734-2071. doi: 10.1145/
2382553.2382556. URL http://doi.acm.org/10.1145/2382553.2382556.

[51] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun Suresh, and Sriram
Rao. Medea: Scheduling of Long Running Applications in Shared Production Clusters.
In Proceedings of the 13th European Conference on Computer Systems, EuroSys ’18.
ACM, 2018. ISBN 978-1-4503-5584-1. doi: 10.1145/3190508.3190549. URL http:
//doi.acm.org/10.1145/3190508.3190549.

[52] Panagiotis Garefalakis, Konstantinos Karanasos, and Peter Pietzuch. Neptune: Scheduling
Suspendable Tasks for Unified Stream/Batch Applications. In Proceedings of the 10th ACM
Symposium on Cloud Computing, SoCC ’19. ACM, 2019. ISBN 9781450369732. doi: 10.
1145/3357223.3362724. URL https://doi.org/10.1145/3357223.3362724.

[53] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion
Stoica. Dominant Resource Fairness: Fair Allocation of Multiple Resource Types. In
Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI ’11. USENIX Association, 2011. URL http://dl.acm.org/citation.
cfm?id=1972457.1972490.

[54] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and Steven Hand. Fir-
mament: Fast, Centralized Cluster Scheduling at Scale. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, OSDI ’16. USENIX As-
sociation, 2016. ISBN 978-1-931971-33-1. URL http://dl.acm.org/citation.
cfm?id=3026877.3026886.
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