
Thesis proposal:

Realizing value in shared compute infrastructures

Andrew Chung
afchung@andrew.cmu.edu

1 Introduction

As operations become increasingly digitized and as data processing tasks become more and more specialized
with the proliferation of various types of data applications, companies are moving their workloads off of
dedicated, siloed clusters in favor of more cost-efficient shared data infrastructures, e.g., public and private
clouds. These shared data infrastructures are often deployed on highly heterogeneous servers, are multi-tenant
with server resources shared across multiple organizations, and serve widely diverse workloads ranging from
batch analytics jobs to consumer-facing services with stringent service level objectives (SLOs).

Both operators and users of such shared data infrastructures strive to optimize for value. Operators seek
to satisfy the demands of their customers (i.e., help users maximize their value) to increase adoption and
lower turnover, all the while without sacrificing cluster operation costs and overhead. At the same time, users
look to complete their tasks in an efficient and timely manner without having to pay large amounts of money.

But, the highly heterogeneous nature of these shared environments imposes a high barrier to value
attainment for both operators and users: Operators face difficult challenges in knowing how to assign compute
resources to customers when heavily loaded. Users, on the other hand, have a wide variety of different
types of compute resources available for rent, making it difficult for them to make value-efficient resource
acquisition decisions for their applications, given application constraints. Indeed, maximizing value in shared
data infrastructures necessarily requires effort from both operators and users.

In our work, we explore the problem of value attainment in shared data infrastructures from both the
perspectives of operators and users. On the operator front, we explore using the notions of historic inter-job
dependencies and expected job utility to inform cluster resource managers about upcoming jobs, their resource
requirements, and the potential value they generate to users. Cluster resource managers can in turn use the
information to effectively allocate cluster resources to jobs to achieve high user value attainment. On the user
front, our work proposes and evaluates two resource acquisition strategies and systems for renting virtual
machine (VM) instances in the public cloud, one for running online services and the other for general batch
analytics jobs, with each demonstrating significant cost savings for users.

2 Thesis statement

Value-realized in shared data environments can be improved both by value- and dependency-aware resource
management systems from cluster operators and by cost- and heterogeneity-aware applications from users.

My thesis proposal will first describe ongoing and planned work for operators of shared clusters to achieve
value for cluster users. It will then provide an overview of prior work on optimizing for user value through
frameworks supporting user applications in shared cluster environments (e.g., in AWS EC2).

Realizing value through dependency-aware resource management (§3). My dissertation will support
my thesis by exploring opportunities for cluster operators and resource managers to realize user value through
analyses of historical inter-job dependencies, effectively prioritizing jobs which are shown to be more historically
valuable to users in the setting of large, multi-tenant corporate clusters (Microsoft Cosmos). This work
consists of two parts:

(i) Ongoing work: Analysis of inter-job dependencies in Cosmos: Challenges & opportu-
nities for resource management (§3.2). Inter-job dependencies pervade shared data analytics
infrastructures, yet are largely ignored in current cluster resource management. I am performing a
detailed analysis of inter-job dependencies in a 50K+ node analytics cluster within Microsoft’s Cosmos
infrastructure, based on job and data provenance logs, deriving consequential observations and untapped
opportunities. We find that nearly 80% of all jobs depend on at least one other job, with 20% of jobs
depending on jobs submitted by a different company organization sharing the data lake. Yet, even
in an expertly-managed and business-critical setting, coordination appears challenging: 34% of jobs
are submitted without checking if the job output they depend on is available, failing if not; perhaps
worse, 13% of jobs depend on jobs that execute at a lower priority, creating non-trivial risk of priority
inversion. We also find, however, that over 68% of jobs exhibit their dependencies in a recurring fashion,
creating potential for using inter-job dependencies to improve resource management. Our results expose
several opportunities to use historical inter-job dependencies to improve resource management.

(ii) Planned work: Value-aware, inter-job dependency driven scheduling (§3.3). Cluster job
schedulers generally consider jobs independently of one another while ignoring their dependencies on the
outputs of other jobs. This independent consideration of jobs may have worked well in siloed clusters,
but in today’s highly shared cluster environments, we believe significant benefits are forfeited by not
considering inter-job dependencies. In my remaining work, I plan to build an inter-job dependency aware
cluster scheduler and evaluate the benefits of dependency awareness using traces from a production
cluster in Microsoft’s Cosmos infrastructure. Our new scheduler will feature a new data representation
for job value, more expressive than that of priority assignments and utility functions, which considers
probabilistic views of a job’s value impact on other jobs historically dependent on it. We will compare
value-attained by our scheduler against state-of-the-art value-aware cluster schedulers.

Realizing value through user applications (§4.1—§4.3). To support my thesis statement, I will also
describe two case studies of research software systems that allow users to realize value through cost savings in
running their applications in the public cloud without significantly impacting their applications’ performance.

(i) Tributary: Spot-dancing for elastic services with latency SLOs (§4.2). Aimed towards the
management of elastic cloud services with latency SLOs, the Tributary elastic control system embraces
the uncertain nature of transient cloud resources, e.g., AWS spot instances, to manage services more
robustly and more cost-effectively. Such transient resources are available at lower cost, but with the
proviso that they can be preempted en masse, making them risky to rely upon for long-running services.
Tributary creates models of preemption likelihood and exploits the partial independence among different
resource offerings, selecting resource allocations that satisfy SLO requirements and adjusting them
over time, as client workloads change. Over a range of web service workloads, we find that Tributary
reduces cost for achieving a given SLO by 81–86% compared to traditional scaling on non-preemptible
resources, and by 47–62% compared to the high-risk approach of the same scaling with spot resources.

(ii) Stratus: Cost-aware container scheduling in the public cloud (§4.3). Aimed towards general
batch analytics jobs, Stratus is a scheduler specialized for orchestrating job execution on virtual clusters,
or dynamically allocated collections of virtual machine instances on public IaaS platforms. Unlike
schedulers for conventional clusters, Stratus focuses on dollar cost considerations, since public clouds
provide effectively unlimited, highly heterogeneous resources allocated on demand. But, since resources
are charged-for while allocated, Stratus aggressively packs tasks onto machines, guided by job runtime
estimates, trying to make allocated resources be either mostly full (highly utilized) or empty (so they
can be released to save money). Simulation experiments based on cluster workload traces from Google
and TwoSigma show that Stratus reduces cost by 17–44% compared to state-of-the-art approaches to
virtual cluster scheduling.

3 Realizing value through dependency-aware resource management

This section describes our ongoing work in realizing value through dependency-aware resource management
from cluster operators. Work in this section is reliant primarily on workload from Microsoft’s Cosmos clusters,

2

with a focus on batch analytics jobs.

3.1 Background and motivation

This section motivates and provides background for our study of complex inter-job dependencies within
modern shared data environments. More specifically, we describe characteristics Microsoft’s Cosmos infras-
tructure and provide an overview of the different types of inter-job dependencies observed within Cosmos.
Shared data environments. Shared data environments such as data lakes and the public cloud have
become core elements of modern data-driven enterprises, providing required data storage and analysis
infrastructure. These environments enhance data processing via a combination of two critical properties: (i) a
highly consolidated, multi-tenant infrastructure that enables multiple teams of data scientists and engineers
to share resources rather than each having their own, and (ii) low data access barriers that allow easy data
sharing between users and various types of data analytics applications. Combined, these properties increase
data re-use [17] and reduce overall computational resource-hours consumed. But, at the same time, such data
re-use necessarily introduces more dependencies between jobs and the datasets they produce. Our ongoing
work focuses on these inter-job dependencies1 that arise from such data re-use.
Cosmos. Cosmos is a big data analytics platform deployed at Microsoft consisting of multiple clusters of
50k+ servers each. Even though numerous application types are executed in Cosmos’s infrastructure, more
than 80% of infrastructure capacity is used for batch data-analytics jobs (Scope jobs). We focus on Scope
jobs and dependencies between them.
Motivation: Inter-job dependencies are prevalent and recurrent. In Cosmos, we find that almost
80% of submitted jobs depend on output generated by at least one other job. Indeed, interestingly, over
half of the jobs are connected in a single dependency subgraph, and surprisingly, many dependencies are
cross-organization, with 20% of jobs depending on jobs submitted by another organization. But, despite so
much inter-job dependence, today’s systems provide little support for addressing associated challenges.

Although it is difficult to know what future jobs will depend on the output generated by a current
job, we find significant hope in recurrence. Previous workload studies have shown that most jobs in data
analytics environments are recurring [23, 37], where a recurring job is one that is submitted many times over
time, often to analyze fresh data. We find that inter-job dependency patterns are similarly recurrent, with
jobs of the same template following similar input dependency patterns. This enables the use of historically
recurring dependencies to (i) analyze and predict relationships between common, dependent recurring jobs,
and (ii) pursue opportunities to exploit the dependency properties between jobs.

Our discussion makes the distinction between jobs and job templates, where a job template is a program
to be executed (one or multiple times) in Cosmos, while a job is an actual execution of a job template: i.e.,
each submission of a job template results in a job. For brevity, in the rest of §3, job templates strictly refer
to templates of recurring jobs.

3.2 Ongoing work: Analysis of inter-job dependencies in Cosmos: Challenges
& opportunities for resource management

This section presents our study on inter-job dependencies within Cosmos. Analyses and observations made
within this study are used to: (i) identify shortcomings in the current operation of shared data environments
and shortcomings in existing job valuation schemes and (ii) explore how inter-job dependency awareness can
inform cluster schedulers to achieve better scheduling (§3.3). We summarize our observations as follows:

Observation 1 (Recurring jobs & dependencies): Most jobs and dependencies are recurring. Recurring
jobs make up 68% of all jobs, while recurring dependencies make up 79% of all dependencies. These properties
imply the predictability of both jobs and their dependencies.
Challenges and opportunities. Recurrence of jobs dependencies lead users to form expectations with
respect to both the latency of their jobs and the arrival time of the inputs their jobs depend on. These
expectations, which present challenges to cluster operators [23, 15], both stem from and are reinforced by past

1We say that Job A depends on Job B if Job A takes as input an output file generated and stored into the shared distributed
file system by Job B. i.e., our nomenclature and analysis focus on fundamental dataflow dependencies among batch analytics
jobs, not distributed stream processing or artificial inter-relationships caused by resource contention.

3

experience. But, this recurrence also implies that the behavior of jobs and their dependencies are predictable:
In our dataset, we observe that if a job x1 of template X depends on a job of template Y , there is more
than a 75% chance that another job x2 of template X will also depend on a job of template Y . Predictable
dependencies can allow resource managers to preemptively configure cluster state in anticipation of the arrival
of future jobs based on jobs that have already arrived.

Observation 2 (Priority mis-configurations): Potential priority mis-configurations are frequent: jobs of
21% of job templates have the chance to be systematically priority-inverted — i.e., recurring jobs consuming
their output are configured with a higher priority assignment. In addition, up to 33% of ad-hoc jobs are
assigned higher priority than the average recurring job submitted within the same organizational queue2.
Challenges and opportunities. This observation confirms two commonly-held beliefs: that (i) properly
configuring job priorities is highly challenging, evident from the fact that a non-trivial amount of job templates
are assigned priorities that can lead to priority inversions, and that (ii) users often care most about the
completion of their own jobs, often assigning high priority to their ad-hoc jobs that exceed that of the
average recurring job, among many of which are production jobs [23]. Analysis of jobs and their dependencies
can enable us to apply strategies to: (i) fix recurring dependencies that can lead to priority inversions,
and (ii) identify and warn users who abuse organizational resources for their benefit.

Observation 3 (Uncoordinated jobs): Many jobs are submitted without coordination with respect to the
completion of their upstream jobs. Such jobs make up 38% of recurring jobs. Furthermore, 89% of these
recurring jobs have input dependencies that are identified as hard dependencies, meaning that up to 34% of
recurring jobs are susceptible to failure due to missing input data from a late upstream job.
Challenges and opportunities. Uncoordinated, hard dependencies3 between downstream and upstream
jobs are fragile. Unlike polling dependencies, the submission of the downstream job in such a dependency
is not coordinated with the completion of the upstream job by checking for its output; and unlike roll-up
dependencies, these dependencies do not allow any missed inputs. Jobs with such dependencies on their
outputs are more prone to violate the expectations set by their downstream consumers. A way to mitigate
the situation is to convert dependent recurring jobs with upstream dependencies that are both hard and
uncoordinated into polling jobs, which, although might add overhead to users by making their job submission
logic more complicated, can provide significant benefits to the smoothness of the execution of these jobs.

Observation 4 (Cross-org jobs & dependencies): Cross-org jobs and dependencies are very common at
Microsoft. Up to 95% of organizations have cross-org dependencies. Of all dependencies, 33% are cross-org,
and 17% of template dependencies are cross-org. Futhermore, 28% of jobs and 23% of recurring jobs are
involved in a cross-org dependency relation.
Challenges and opportunities. While the design of systems today largely neglects inter-job dependencies,
the proliferation of cross-org dependencies, the potential mis-configuration of priority assignments, and the
prevalence of uncoordinated dependent job templates reveal many opportunities in system design that can
improve cluster operation efficiency and communication of contractual agreements across organizations.

Observation 5 (WCC shapes and sizes): The structure of weakly-connected-components (WCCs) in
Cosmos’s job dependency graph G4 is highly-diverse, with a mix of both complex and simple WCCs of various
shapes and sizes. We observe that most WCCs are small, but large WCCs cover most jobs. As WCCs grow
in size, root jobs become more impactful, as measured by its ratio over the number of leaf jobs.

Fig. 1a shows that > 95% of WCCs are small and consist of less than three jobs, and that more than 50%
of jobs belong to a single WCC. Within all WCCs, we analyze the structures of WCCs in G with sizes of at
least 10 jobs, which cover more than 75% of all jobs.

To identify simple WCCs, we induce undirected subgraphs from each WCC and identify ones that are
trees, where a tree is an undirected graph in which any two vertices are connected by exactly one path. Trees

2Hierarchical queues are used to designate the resource share of an organization in a cluster at Microsoft, and priority
assignments are only comparable within jobs of the same queue.

3Dependencies are hard if the downstream job requires the output(s) of the upstream job to be able to run successfully.
4The job dependency graph (G) is a directed acyclic graph (DAG) where each vertex in the graph is a job. A job x dependent

on job y forms a directed edge (y, x), with y as the source and x as the target. A weakly connected component (WCC) in G is
defined as a maximal subgraph S ∈ G such that each pair of vertices in S is connected by at least one undirected path in S.

4

0 100 101 102 103 104 105 106

Number of jobs in WCC (N)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n

jobs in WCC (CDF)

% jobs covered by WCC of size ≤ N

(a) WCC sizes. This figure shows that most WCCs are
small (# jobs in WCC), and that most jobs are covered by
large WCCs (% jobs covered by WCC of size ≤ N).

Size

Diameter

Latency

Agg runtime

Agg CPU-hours

Agg data read

Agg data write

Internals
Endpoints

RootsLeaves

Size

Diameter

Latency

Agg runtime

Agg CPU-hours

Agg data read

Agg data write

Internals
Endpoints

Roots
Leaves

1.00 -0.03 -0.03 0.59 0.07 -0.13 -0.13 -0.04 -0.47

-0.03 1.00 0.17 -0.08 0.15 0.18 0.17 0.69 0.18

-0.03 0.17 1.00 0.30 0.53 0.57 0.58 -0.13 0.21

0.59 -0.08 0.30 1.00 0.71 0.42 0.44 -0.19 -0.25

0.07 0.15 0.53 0.71 1.00 0.82 0.80 -0.13 0.14

-0.13 0.18 0.57 0.42 0.82 1.00 0.96 -0.27 0.31

-0.13 0.17 0.58 0.44 0.80 0.96 1.00 -0.25 0.28

-0.04 0.69 -0.13 -0.19 -0.13 -0.27 -0.25 1.00 0.08

-0.47 0.18 0.21 -0.25 0.14 0.31 0.28 0.08 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
S

p
earm

an
correlation

(b) Spearman’s correlation for WCC properties. This
figure shows the correlation between WCC properties for
WCCs with size ≥ 10, discussed in Observation 5.

Figure 1: Weakly connected component (WCC) properties.

are structurally simple, but can be more fragile; i.e., for a path connecting any pair of jobs, the failure or
late-arrival of any single job on the path can potentially lead to cascading failures. Our analysis shows that
the complexity of WCCs are varied, and that not all large WCCs are complex: 55% of analyzed WCCs are
trees, and there exist trees in WCCs as large as up to 800 vertices.

To learn more about the shapes and properties of WCCs, we analyze features of WCCs and try to correlate
them using Spearman’s correlation (Fig. 1b). Surprisingly, for some properties that we expected strong
positive correlation with WCC size we find weak correlation (e.g., diameter, latency, aggregate CPU-hours)
or even negative correlation (e.g., aggregate data read/write). But, We do observe that as the sizes of WCCs
grow, Roots

Leaves shrinks, i.e., larger graphs will appear narrower at the top and wider at the bottom. This shows
that there are often more leaf than root jobs in analyzed WCCs, suggesting that some jobs’ outputs are more
important than others and have wide impact downstream. Indeed, 14% of all jobs are dependent upon the
output of the top 0.1% of jobs, making failure or delay of these jobs much more disruptive.
Challenges. Our observations show that many jobs are inter-connected through data dependencies and
imply that certain jobs need to be scheduled and placed more carefully than others, since their output is
depended upon by many other jobs downstream. The parameters (e.g., submission time and priority) of these
jobs should only be tuned upon careful consideration, since seemingly harmless changes made by job owners
can potentially cause a ripple effect downstream.

3.3 Planned work: Value-aware, inter-job dependency driven scheduling

This section describes the background for and sets up requirements for our exploratory work in Talon, an
inter-job dependency and value aware cluster scheduler.

3.3.1 Today’s production clusters: priority based scheduling and automating job values

Companies can achieve lower costs-of-goods-sold through effective value-oriented cluster job scheduling
and data pricing, ensuring that jobs producing data with more business value complete on time. To do
this today, schedulers at most production data analytics environments, including in Cosmos, use priority
assignments to determine a job’s order in its claim to resources. In this context, the notion of job value
is often translated directly into a priority assignment on the job—the greater a job’s value, the higher its
priority. But, as noted in Observation 2, priorities are difficult to set correctly.
Dependency-driven job valuation. Although determining the true dollar-value of jobs is difficult, if not
impossible, we find it promising to evaluate the importance of jobs based on their historical inter-job depen-
dencies. Through our analysis of connected components within our job dependency graph (Observation 5),
combined with the fact that many recurring jobs are uncoordinated with respect to the availability of their
input (Observation 3), we find that the delay or failure of certain jobs are much more impactful than that of

5

other jobs. Hitches in the execution of these jobs are likely to cause much more financial and operational
damage to users and organizations within the company. With historical inter-job dependencies, we can
objectively measure the impact of recurring jobs based on past telemetry of their downstream consumers,
which we believe can make a good proxy for dollar-value of jobs, where our method proposed in Owl [12] uses
a job’s impact on downstream users (measured by features such as aggregate output downloads) and impact
on downstream jobs (measured by features such as aggregate compute-hours) as a proxy for job value5.

3.3.2 Dependency-driven utility functions

Even if priority assignments were perfectly configured to reflect job value, a fundamental limitation of
the priority assignment construct limits its effectiveness in cluster scheduling. Specifically, there is only one
dimension to priority assignments, so they cannot express both job importance and urgency at the same time.
On the other hand, utility functions allow schedulers to estimate job value realizable if it were to complete a
job by time T by expressing job value as a function of job completion time, adding the dimension of time to
job value assignments.

A simple example shows the shortcoming of priority assignments: Assuming perfect knowledge of job
value, suppose two jobs A and B, both requesting access to a singleton cluster resource (i.e., only one job
gets to run), are waiting in the scheduler’s job queue. A is more important, and therefore assigned a higher
priority, but is not latency sensitive. B on the other hand, has a tight deadline to meet, but is less important.
The perfect scheduler would assign the resource to B while delaying the execution of A, where in reality,
most priority-based schedulers would give resource preference to job A.

Utility functions are commonly used in scheduling literature [39, 28] and have been shown to vastly
improve a schedulers’ decision making to achieve higher value attained. But, utility functions have not
been deployed in any real production cluster environments, presumably due to the difficulty involved in
constructing reliable utility functions that truly reflect a job’s value over time.

Our work in Owl [12] describes a data-driven approach to automate utility function construction using
dependency-based job value, removing the burden of manually creating reliable utility functions: Suppose each
job j has inherent value vj(τ), which is value rewarded for completing j by time τ relative to the submission
time of the j (i.e., vj(t) = valj if t ≤ τ , 0 otherwise). We define the base case of utility functions for leaf jobs
j with no dependent jobs as uj(t) = vj(τ). We then define the recursive case of utility functions for non-leaf
jobs j with directly dependent jobs Dj as uj(t) = (

∑
l∈Dj

χ(t≤sjl)
(t) ∗ ul(0)) + vj(τ), where χ(t≤sjl)

(t) is a

step function that evaluates to 1 if j completes prior to the submission time of l relative to j’s submission
time (term sjl), 0 otherwise; ul(0) represents the maximum achievable utility by l directly downstream of j.
Fig. 2a illustrates the construction of a utility function with a toy example, and Fig. 2b shows the real utility
function for recurring jobs of a real job template in production.

3.3.3 Talon: Value-aware, inter-job dependency driven scheduling

Shortcomings of utility functions. Utility functions, as described in §3.3.2, reflect an assumption that
dependent jobs will fail upon submission if their inputs are missing. In reality, however, there are cases
when the downstream job can tolerate missing (e.g., jobs that roll-up and compute aggregate statistics from
outputs of previous recurring jobs) or late input (e.g., jobs that poll for their input).

Our utility functions also cannot encode value attainable for completing an upstream job when a
downstream job is dependent on multiple upstream jobs. For example, suppose two jobs A and B are
submitted and queued at a cluster, both of whose output are required for the success of a future job C. In
this case, both the utility functions of jobs A and B will show a drop in value corresponding to the expected
submission of job C; but, the scheduler will not be able to ascertain that both A and B are required to
complete in order for C’s value to be attainable.
Talon and research problems to solve. Below, we list several key research problems that must be
addressed to achieve Talon’s goals:

5A short experiment adopting Owl’s scheme for job valuation [12] to see how dependency-driven job values match up with
pre-existing notions of job importance, using a list of six highly important recurring job templates hand-curated by the Cosmos
resource management team at Microsoft, show that Owl’s method of valuing jobs yields mostly consistent relative rankings of
importance compared to existing priority-based importance rankings.

6

A B
D

E

𝑢"(𝑡)

C

Time	from	submission	of	A

𝑢" 0 𝑢4 0

𝑢5 0

𝑣" 𝑡 = 𝑎

(a) Utility function toy example. This figure shows
a toy example of a utility function for job A, directly
dependent upon by jobs B and C. A starts out holding
value uA(0) = uB(0) + uC(0) + valA. As directly depen-
dent jobs are submitted and fail, A loses realizable value:
e.g., uA(t = sAB) = uC(0) + valA.

N
or

m
al

iz
ed

 jo
b

va
lu

e

Minutes from job submission

Shades of red: jobs (darker à more recent)
Blue: expected job utility function (average)

(b) A real utility function. This figure shows a utility
function of a recurring job in production which has a
directly dependent periodic job. The job drops in value
every time an instance of the directly dependent job
arrives, corresponding to a drop in realizable value if it
fails to complete in time.

Figure 2: Utility functions.

1. Prediction model for recurring dependencies: While Observation 1 hints that recurring depen-
dencies can be predictable, we will need to build and evaluate a statistics-based model that demonstrates
the predictability of recurring dependencies. Given a set of jobs that have already arrived, the model
should predict both whether a dependent job will arrive and its time-to-dependency.

2. Talon job value representation: We should design a data representation for job value that overcomes
the limit of utility functions, as discussed above. The data representation should explicitly consider:
(i) jobs already in the queue, (ii) the types of dependencies of upcoming, directly-dependent jobs on
queued jobs, (iii) the probability that directly-dependent jobs will arrive, using the prediction model
described above, and (iv) a summarized view of properties of upcoming jobs (e.g., their aggregate
downstream value and manually set deadlines downstream).

3. Talon scheduling algorithm: A new scheduling algorithm is needed to take advantage of the more
expressive data representation described above.

4. Evaluation of Talon with dependency-preserving workloads: We will need to evaluate Talon
against alternative, value-aware schedulers—e.g., ones using priority assignments and utility functions,
with inter-job dependency-preserving workloads.

4 Realizing value through user applications

This section describes our contributions to realize value for users through cost-aware user application
frameworks specialized to the shared cloud environments.

4.1 Background

This section describes background for our work in application frameworks that can help users reduce their
cost of running applications in shared environments such as the public cloud.

4.1.1 Public vs private clouds

A cloud is a datacenter that provides software services supported by remote hardware [10]. When a
cloud is offered to the public via the Internet, most often in a pay-as-you-go-manner, the cloud is a public
cloud; if the cloud is operated by and only available internally within a business or corporation, the cloud
is a private cloud. Compute and storage resources in clouds, both public and private, are highly shared by
multiple users, each potentially of a different organization. Our studies (§4.2, §4.3) are mainly concerned
with realizing user value when running their applications on virtual machines (VMs) rented from public
clouds. However, we believe our strategies can be equally effective in the context of private clouds, where

7

organizations within companies are often given fair shares of resources, but idle, excess capacity can acquired
through bidding [36, 27] or bonus token mechanisms [24, 11].

4.1.2 VM instance offerings in clouds — AWS EC2 as a concrete example

Cloud service providers (CSPs) offer an effectively infinite (from most customers’ viewpoints) set of
VM instances6 available for rental at fine time granularity. Each CSP offers diverse VM instance “types”,
primarily differentiated by their constituent hardware resources (e.g., core counts and memory sizes), and
leasing contract models.

The two primary types of contract model offered by major CSPs [3, 7, 6] are reliable and transient.
Instances leased under an reliable contract are non-preemptible. Instances leased under a transient contract
are made available, on a best-effort basis, at decreased cost (in for-pay settings) and/or at lower priority (in
private settings), and can be unilaterally revoked by the CSP at any time. These transient instances are often
offered as a way to increase utilization in the CSPs’ datacenters. This section describes transient instances in
AWS EC2, both to provide a concrete example and because our software systems specialize to EC2 behavior.

EC2 offers “on-demand instances”, which are VMs rented under reliable contracts billed at a flat per-second
rate. EC2 also offers the same VM types as “spot instances”, which are transient but are usually billed at
prices significantly lower (70% - 80%) than the corresponding on-demand price. EC2 may preempt spot
instances at any time, thus presenting users with a trade-off between reliability and cost savings.

There are several properties of the AWS EC2 spot market behavior that affect customer cost savings
and the likelihood of instance preemption. (1) Each instance type in each availability zone has a unique
AWS-controlled spot market associated with it, and AWS’s spot markets are not truly free markets [9].
(2) Price movements among spot markets are not always correlated, even for the same instance type in a
given region [31]. (3) Customers specify a bid in order to acquire a spot instance. The bid is the maximum
price a customer is willing to pay for an instance in a specific spot market; once a bid is accepted by AWS,
it cannot be modified. (4) A customer is billed the spot market price (not the bid price) for as long as the
spot market price for the instance does not exceed the bid price or until the customer releases it voluntarily.
(5) As of Oct 2nd, 2017, AWS charges for the usage of an EC2 instance up to the second, with one exception:
if the spot market price of an instance exceeds the bid price during its first hour, the customer is refunded
fully for its usage. No refund is given if the spot instance is revoked in any subsequent hour. We define the
period where preemption makes the instance free as the preemption window. While many bidding strategies
for EC2 spot instances have been studied, but the most popular strategy by far is to bid the on-demand price
to minimize the odds of preemption [31].

4.2 Tributary: Spot-dancing for elastic services with latency SLOs

This section describes Tributary [19], a control system for elastic web services with latency SLOs that
exploits the low cost of transient cloud VM instances (e.g., AWS spot instances), to robustly and cost-effectively
scale-in and scale-out web services run in the public cloud.

4.2.1 Problem statement and challenges

Elastic service scaling schemes generally assume independent and infrequent failures, which is a safe
assumption for high-priority allocations in private clouds and non-preemptible allocations in public clouds
(e.g., on-demand instances in EC2). This assumption enables scaling schemes to focus on client workload and
server responsiveness variations in determining changes to the number of machines needed to meet SLOs.

Modern clouds also offer transient resources (§4.1) at a discount, creating an opportunities for lower-cost
service deployments. But, simply using standard scaling schemes fails to address the risks associated with such
resources. Namely, preemptions should be expected to be more frequent than failures and, more importantly,
preemptions often occur in bulk [20]. Akin to co-occurring failures, bulk preemptions can cause traditional
scaling schemes to have sizable gaps in SLO attainment. Tributary is an elastic control system that considers
properties of and exploits these transient, preemptible instances to reduce cost and increase robustness to
unexpected workload bursts in web services run on the public cloud.

6We use “instance” as a generic term to refer to a virtual machine resource rented in a public IaaS cloud.

8

4.2.2 Tributary-specific background and related work

Scaling policies and resource acquisition schemes. Elastic web services dynamically acquire and release
machine resources to adapt to time-varying client load. In this document, we distinguish two aspects of
elastic control, the scaling policy and the resource acquisition scheme. The scaling policy determines, at any
point in time, how many resources the service needs in order to satisfy a given SLO. The resource acquisition
scheme determines which resources should be allocated and, in some cases, aspects of how. Generally, an
adaptive scaling policy seeks to use just the number of machines required to achieve its SLOs, which are
commonly focused on response latency and ensuring that a given percentage (e.g., 95%) of requests are
responded to in under a given amount of time [21, 26]. Too many machines results in unnecessary cost, and
too few results in excess customer dissatisfaction. As such, much research and development has focused on
doing this well [16, 33].
Related work. AWS AutoScale [2] is a service provided by AWS that maintains the resource footprint
according to the target determined by a scaling policy. At initialization time, if using spot instances, the user
can use a so-called “spot fleet” [4] consisting of multiple instance type and availability zone options. In this
case, the user configures AutoScale to use one of two strategies. Our experiments focus on the lowestPrice
strategy, which will always select cheapest current spot price of the specified options.

ExoSphere [32] is a virtual cluster framework for spot instances. Its instance acquisition scheme based on
market portfolio theory, relies on a specified risk averseness parameter (α). ExoSphere formulates the return
of a spot instance acquisition as the difference between the on-demand cost and the expected cost based on
past spot market prices. It then tries to maximize the return of a set of instance allocations with respect to
risk, considering market correlations and α, determining the fraction of desired resources to allocate in each
considered spot market. ExoSphere acquires instances from each spot market bidding the on-demand price.

Proteus [20] is an elastic ML system that combines on-demand resources with aggressive bidding of spot
resources to complete batch ML training jobs faster and cheaper. Rather than bidding the on-demand price,
it bids close to market price and aggressively selects spot markets and bid prices that it predicts will result in
preemption, in hopes of getting many partial hours of free resources. The few on-demand resources are used
to maintain a copy of the dynamic state as spot instances come and go, and acquisitions are made and used
to scale the parallel computation whenever they would reduce the average cost per unit work.

4.2.3 System design

Tributary is an elastic control system that comprises both a pluggable scaling policy and a resource
acquisition scheme tailored to cloud resource markets. In order to run web services robustly at a lower
cost using transient instances, Tributary explicitly recognizes bulk preemption risk (§4.2.1), exploiting the
fact that preemptions are often not highly correlated across different pools of resources in heterogeneous
clouds. AcquireMgr is Tributary’s resource acquisition component, and its approach differentiates Tributary
from previous elastic control systems. It is coupled with a scaling policy, any of many popular options,
which provides the time-varying resource quantity target based on client load. AcquireMgr uses machine
learning (ML) models to predict the preemption probability of transient resources and exploits the relative
independence of AWS spot markets to account for potential bulk preemptions by acquiring a diverse mix of
preemptible resources collectively expected to satisfy the user-specified latency SLO.
Resource allocations and service utility functions. AcquireMgr interacts with AWS to acquire resources.
To do so, AcquireMgr builds sets of allocation requests, which specifies the instance type, availability zone,
bid price, and number of instances to acquire. An allocation is defined as a set of instances of the same type
acquired at the same time and price. AcquireMgr’s footprint is a set of such allocations.

AcquireMgr abstracts away the resource type which is being optimized for. For workloads described in
this paper, virtual CPUs (VCPUs) are the bottleneck resource; however, it is possible to optimize for memory,
network bandwidth, or other resource types instead. A service using Tributary provides its resource scaling
characteristics to AcquireMgr in the form of a utility function υ(). This utility function maps the number of
resources to the percentage of requests expected to meet the target latency, given the load on the web service.
The shape of a utility function is service-specific and depends on how the service scales, for the expected load,
with respect to the number of resources. In the simplest case where the web service is embarrassingly parallel,
the utility function is linear with respect to the number of resources offered until 100% of the requests are

9

expected to be satisfied. Tributary allows applications to customize the utility function so as to accommodate
the resource requirements of applications with various scaling characteristics.

In addition to providing υ(), the service also provides the application’s target SLO in terms of a percentage
of requests required to meet the target latency. By exposing the target SLO as a customizable input, Tributary
allows the application to control the Cost-SLO tradeoff. Upon receiving this information, AcquireMgr acquires
enough resources to meet SLO in expectation while optimizing for expected cost.
Prediction model. When acquiring spot instances on AWS, there are four parameters that affect the
preemption probability of an instance: its time-of-bid, type, availability zone, and bid price. We build an
LSTM model, a popular model often used on temporal datasets, that predicts the probability of an instance
being preempted within an hour given the above parameters.

Our model is trained offline with data derived from AWS spot market price histories. Each sample in the
training dataset is a hypothetical bid, and the target variable, preempted, of our model is whether or not an
instance acquired with the hypothetical bid is preempted before the end of its preemption window (1 hour,
as described in §4.1). We use the following method to generate our data set: For each instance and bid delta
(bid price above the market price with range [0.00001, 0.2]) we generate a set of hypothetical bids with the
bid starting at a random point in the spot market history. For each bid, we look forward in the spot market
price history. If the market price of the instance rises above the bid price at any point within the hour, we
mark the sample as preempted. For each historical bid, we also record the ten prices immediately prior to
the random starting point and their time-stamps.
AcquireMgr overview. To make decisions about which resources to acquire or release, AcquireMgr
computes the expected cost and expected utility of the set of instances it is considering at each decision point.
Calculations of the expected values are based on probabilities of preemption computed by AcquireMgr’s
trained LSTM model. Here, we briefly describe how AcquireMgr computes these values.

We first define the notion of a resource pool : Each instance type in each availability zone forms its own
resource pool. In the context of the EC2 spot instances, each such resource pool has its own spot market. We
also recall that an allocation is specified by a single resource request to EC2 and uniquely identifiable by a
tuple of request time, bid price, and resource pool. Note that an allocation can contain multiple instances,
and that Tributary can request and manage multiple allocations of VMs from the same resource pool.

The expected cost for a given set of allocations can be calculated as the sum over the expected cost of
individual allocations, where the expected cost of an allocation (a) is computed by considering the probability
of preemption within the allocation’s preemption window at a given bid delta (through the ML model).
There are exactly two possibilities: an allocation will either be preempted with probability βa (wherein the
allocation will be free-of-cost) or it will reach the end of its preemption window in the remaining ta minutes
with probability 1− βa, in which case we would voluntarily release the allocation. The expected cost for the
allocation can then be written as: (1− βa) ∗Pa ∗ ka ∗ ta + βa ∗ 0 ∗ ka ∗ ta, where ka is the number of instances
in the allocation, and Pa is the market price for the instance type at the time of the allocation request.

In addition to computing expected cost for a set of allocations, AcquireMgr also computes the set’s
expected utility, which is the expected percentage of requests that will meet the latency target, given the
allocations within the set and the client demand, taking into account the probability of allocation preemptions.

The expected utility VA of a set of allocations A is calculated as: VA =
∑resc(A)

r=0 P (R = r) ∗ υ(r), where
P (R) is the probability mass function of the discrete random variable R that denotes the number of resources
not preempted within the next hour, υ is the utility function provided by the service, and resc(A) is the
function that reports the total amount of resources in a set of allocations A (e.g., in number of VCPUs).

Our equation computes the expected utility over the next hour given a workload as though Tributary
just bid for all its allocations. This works, even though there will usually be complex overlapping expiration
windows across an hour, because it only needs to hold true until recomputed at the next decision point, which
is never more than a minute away, as AcquireMgr continuously reevaluates its constituent instances.

In deriving P (R = r), AcquireMgr computes the probability that r resources remain among all allocations
of A, taking conditional preemption probabilities of allocations from the same resource pool into account. For
example, if allocations x and y both come from the same resource pool, their probabilities of being preempted
will be not be independent, and AcquireMgr takes this into consideration.

10

Tributary also introduces a regularization term for each resource pool to increase bidding in markets with
low correlation, where a weighted, configurable penalty is applied based on recent market price correlation
between resource pools. This encourages Tributary to create a diversified footprint, reducing the probability
that significant portions of instances are preempted simultaneously.
Scaling out. When Tributary starts, the user specifies a target SLO in terms of percentage of requests that
respond within a certain latency for Tributary to target. At each decision point, AcquireMgr’s objective is
to acquire resources until the expected utility θ is greater than or equal to the target SLO. If the expected
utility is greater than or equal to the target SLO, no action is taken; otherwise, AcquireMgr computes the
expected cost and utility of the current set of allocations. AcquireMgr then calculates the missing number of
resources required to meet the target SLO and builds a set of possible allocations that consists of allocations
from different resource pools at different bid prices. For each possible new allocation, AcquireMgr records the
new expected utility divided by the new expected cost, choosing the allocation that maximizes this value.
AcquireMgr continues to add possible allocations until it achieves the target SLO in expectation.

To accommodate potential resource preemptions, Tributary inherently acquires more than the required
amount of resources if any of its allocations have a preemption probability greater than zero, which is
always the case with spot instances. While the primary goal of these additional resources is to account for
preemptions, they have the added benefit to handle unexpected increases in load. Our experiments (§4.2.4)
show that these resource buffers both increase the fraction of requests meeting latency targets and decrease
cost.
Scaling in. Aside from preemptions, Tributary also tries to scale in voluntarily. When an allocation reaches
the end of its preemption window, it is terminated and replaced with a new allocation if required, since
spot instances that run for more than an hour cannot benefit from preemption refunds. When resource
requirements decrease, Tributary also considers terminating allocations for those still within their preemption
windows—starting with allocations least likely to be preempted (i.e., allocations least likely to be refunded for
preemption). During this process, Tributary chooses the allocation with the least time remaining in the hour,
computes the expected utility without this allocation, and if it is greater than the target SLO, Tributary
terminates the allocation. Tributary continues to try and terminate allocations as long as θ is greater than
the target SLO.
Example. Fig. 3 shows how Tributary and AutoScale handle a sample workload, including how the extra
resources Tributary acquires to handle preemption events can also handle an unexpected request rate increase
and how aggressive allocation selection can get some resources for free due to preemptions.

4.2.4 Evaluation

This section evaluates Tributary’s effectiveness, with more details available in our paper [19].
Platform. We report results for use of three AWS EC2 spot instance types: c4.large, c4.xlarge, and c4.2xlarge.
The results correspond to the us-west-2 region, which consists of three availability zones. Using the three
instance types in each availability zone, our experiments involve nine resource pools.
Workload. Our simulated workload uses four real-world traces for request arrival times: ClarkNet, Berkeley,
WorldCup98 [14], and WITS [40], each with different characteristics. All traces are scaled to have an average
of 125 requests per second in order to generate sufficient load for the experiments. Our discussion focuses on
the ClarkNet trace, which is periodic and diurnal, while evaluation of our system on other traces is described in
further detail in our paper. Each request in our trace consists of a CPU-bottlenecked computation that can be
processed in ∼100ms on a single VCPU. Our experiments’ resource requirements are therefore characterized
by requests-per-second-per-VCPU, with our target service latency per request set to one second. From
here on, we define a “slow” request as a request that does not meet the latency target. Each VM instance
maintains a queue of requests, and we simulate the queueing effects using a discrete event simulator. The
queue size per instance is 10x the number of VCPUs in the instance.
Spot market traces. To achieve fair comparisons across a wide range of data points, we perform cost
analysis using historical spot market traces between January 23, 2017 and March 23, 2017 in us-west-2.
Scaling policies evaluated. We implement three popular scaling policies: Reactive, Predictive Moving
Window Average (MWA), and Predictive Linear Regression (LR) to evaluate our system. The utility function
provided by the service is linear for all three policies since our workload characteristic is embarrassingly

11

Eviction

Termination

8 c4.large in us-west-2c

2 c4.2xlarge in us-west-2a

4 c4.xlarge in us-west-2a

4 c4.xlarge in us-west-2c

(a) Legend

Alloc B

Alloc C

R
at

e
of

 R
eq

ue
st

s
Alloc A

Alloc D

Time (min)

Alloc C

6030

Alloc E

Alloc D

(b) Tributary

Alloc 2

Alloc 3

R
at

e
of

 R
eq

ue
st

s

Alloc 1

Time (min)

Alloc 3

6030

Alloc 4

(c) AutoScale

Figure 3: Figures (b) and (c) show how Tributary and AutoScale handle a sample workload respectively. Figure (a)
is the legend for (b) and (c), color-coding each allocation. The black dotted lines in (b) and (c) signify the request
rates over time. At minute 15, the request rate unexpectedly spikes and AutoScale experiences “slow” requests
until completing integration of additional resources with 3. Tributary, meanwhile, had extra resources meant to
address preemption risk in C, providing a natural buffer of resources that is able to avoid “slow” requests during
the spike. At minute 35, when the request rate decreases, Tributary terminates B, since it believes that B has the
lowest probability of getting the free partial hour. It does not terminate D since it has a high probability of eviction
and is likely to be free; it also does not terminate C since it needs to maintain resources. AutoScale, on the other
hand, terminates both 2 and 3, incurring partial cost. At minute 52, the request rate increases and Tributary again
benefits from the extra buffer while AutoScale misses its latency SLO. In this example, Tributary has less “slow”
requests and achieves lower cost than AutoScale because AutoScale pays for 3 and for the partial hour for both 1 and
2 while Tributary only pays for A and the partial hour for B since C and D were preempted and incur no cost.

0

2

4

6

8

10

12

14

0

10

20

30

40

50

AutoScale AutoScale+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(a) Reactive

0

2

4

6

8

10

12

14

0

10

20

30

40

50

AutoScale AutoScale+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(b) Predictive-LR

0

2

4

6

8

10

12

14

0

10

20

30

40

50

AutoScale AutoScale+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(c) Predictive-MWA

Figure 4: Cost savings (red) and percentage of “slow” requests (blue) for the ClarkNet trace.

parallel. If a workload exhibits different scaling characteristics, a different utility function can be employed.
Evaluation vs AutoScale. We evaluate Tributary’s ability to reduce cost and latency target misses against
AutoScale. AWS AutoScale, as offered, only supports the simplest scaling policies. To provide better
comparison, we implement AWS AutoScale’s resource acquisition policy according to its documentation [2].

Fig. 4 shows the cost savings and percentage of “slow” requests for the ClarkNet trace. The cost savings are
normalized against running Tributary on on-demand resources. The results show that Tributary reduces cost
and “slow” requests for all scaling policies. Cost savings are ∼ 85% compared to on-demand resources. For
the ClarkNet trace, Tributary reduces cost by 36%, 24% and 21% compared to to AutoScale for the Reactive,
Predictive-LR and Predictive-MWA scaling policies, respectively. Compared to AutoScale, Tributary reduces
“slow” requests by 72%, 61% and 64%, respectively, for the scaling policies. Furthermore AutoScale+Buffer,
shows the cost of provisioning AutoScale with a large enough resource buffer such that its number of
“slow” requests matches that of Tributary. Tributary reduces cost by 61%, 56% and 57% compared to
AutoScale+Buffer for the three scaling policies.
Evaluation vs ExoSphere. We implemented ExoSphere’s allocation strategy (§4.2.2) for comparison against
Tributary. Fig. 5 shows the normalized cost and percentage of “slow” requests served for Tributary and
for ExoSphere with small (1) and large (109) values of α. These experiments were performed on a further

12

0

5

10

15

20

25

0

10

20

30

40

Exo Small α Exo Large α Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(a) Reactive

0

5

10

15

20

25

0

10

20

30

40

Exo Small α Exo Large α Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(b) Predictive-LR

0

5

10

15

20

25

0

10

20

30

40

Proteus Proteus+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(c) Reactive

0

5

10

15

20

25

0

10

20

30

40

Proteus Proteus+Buffer Tributary

S
lo

w
 R

e
q

u
e

s
t

P
e

rc
e

n
ta

g
e

C
o

s
t(

%
)

N
o

r
m

a
li

z
e

d
 t

o
 O

n
-
D

e
m

a
n

d

Cost

Slow Requests

(d) Predictive-LR

Figure 5: Comparing to ExoSphere and Proteus. Predictive-MWA results not shown but similar.

scaled-up version of the ClarkNet trace (100x of already-scaled version), since ExoSphere was designed for
100s to 1000s of instances and performs poorly at a scale of 10s. In our experiments, we observed that
Exosphere with a small α tends to acquire mainly the cheapest resources, inducing little diversity and
increasing the number of “slow” requests in the event of preemptions. Tributary’s advantage in both cost
and SLO attainment results from Tributary’s exploitation of spot instance characteristics.
Evaluation vs Proteus. We implemented Proteus’s allocation strategy (§4.2.2), modified to acquire only
spot resources. Fig. 5 compares Tributary and Proteus for the ClarkNet trace, for two different scaling
policies. While Proteus achieves lower cost than Tributary, it experiences a large increase in ”slow” requests.
This increase is due to Proteus not diversifying its resource pool, instead only acquiring resources based on
reducing average per-VCPU cost. When told by the scaling policy to acquire additional buffer resources,
(similar to AutoScale+Buffer), Proteus is still unable to match Tributary’s number of ”slow” requests no
matter how large the buffer. This is due to the lack of diversity in the instances that Proteus acquires.

4.3 Stratus: Cost-aware container scheduling in the public cloud

This section describes Stratus [13], a cost-aware, specialized batch analytics job scheduler for orchestrating
job execution on collections of VM instances rented from the public cloud. Stratus aggressively packs job
tasks onto VMs, guided by job runtime estimates, to lower the dollar cost of executing batch job workloads.

4.3.1 Problem statement and challenges

Many organizations rely on public clouds to offload workload bursts from traditional on-premise clusters
(so-called “cloud bursting”) or even to replace these clusters entirely. Although traditional cluster schedulers
could be used to manage a mostly static allocation of public cloud VM instances, such an arrangement would
fail to exploit the public cloud’s elastic on-demand properties and thus be unnecessarily expensive.

A common approach is to allocate an instance for each submitted task and then release that instance
when the task completes. But, this new-instance-per-task approach misses significant opportunities to reduce
cost by packing tasks onto fewer and perhaps larger instances. Doing so can increase utilization of rented
resources and enable exploitation of varying price differences among instance types.

What is needed is a virtual cluster (VC) scheduler that packs work onto instances without assuming that
a fixed pool of resources is being managed. The concerns for such a scheduler are different than for traditional
clusters, with resource rental costs being added and queueing delay being removed by the ability to acquire
additional resources on demand rather than forcing some jobs to wait for others to finish. Minimizing cost
requires good decisions regarding which tasks to pack together on instances as well as when to add more
instances, which instance types to add, and when to release previously allocated instances.

4.3.2 Stratus-specific background and related work

Autoscaling of virtual clusters. There are two parts to autoscaling a VC: determining the capacity to
scale to and picking the right set of instances to meet said capacity. CSPs offer VC management frameworks
(e.g., Amazon EC2 Spot Fleet [4]) for choosing and acquiring instances to scale based on a user-specified
strategy, up to a target capacity.
Assigning containerized tasks to instances. Container services enable containerized user tasks to be
run on a public cloud. In the server-based model [1], users provide a pool of instances while the container
service schedules and packs tasks on to available VMs according to a configured placement policy. In the

13

container-based model [5], the container service automatically manages container placement, execution, and
underlying infrastructure. But, this approach is currently significantly more expensive than other alternatives.
Task-per-instance virtual cluster schedulers. Most previous work on scheduling jobs on public cloud
resources maps each task of each job to an instance, acquired only for the duration of that task. An example
we compare to, HotSpot [34], exploits the dynamic nature of spot markets and the diversity of instance types,
always allocating the cheapest instance on which a new task will fit and migrating tasks from more expensive
instances to cheaper instances.
Packing VC schedulers. Compared to the common approach of assigning a single-task-per-instance in
existing VC scheduling literature, schedulers that pack tasks onto instances may reduce overall cost, as they
reduce the risk of lower utilization due to imperfect fit. One reasonable approach packs containerized tasks
on an elastic VC using CSP-offered services. Specifically, one can use server-based container services (e.g.,
ECS) to place containerized tasks on to instances, while maintaining a pool of running instances with an
instance management frameworks (e.g., SpotFleet).

SuperCloud is a system that enables application migration across different clouds [35], and it includes a
subsystem (SuperCloud-Spot) used for acquiring and packing spot instances [22]. SuperCloud-Spot appears
to be designed primarily for a fixed set of long-running jobs (e.g., services); but, it represents an important
step toward effective VC scheduling, and we include it in our evaluations.
Energy-conscious scheduling. Energy-conscious schedulers attempt to reduce the energy consumption of
a cluster by actively causing some machines to be idle and powering them down. To do so, they attempt
to pack tasks onto machines as tightly as possible to minimize the number that must be kept on. This
goal draws a parallel to the goal of VC schedulers, whose primary objective is to minimize the cluster’s bill.
But, these schedulers generally do not address the opportunities created by instance heterogeneity or price
variation aspects of VC scheduling. The closest scheme to Stratus is a scheduler proposed by Knauth et
al [25], which packs VMs onto physical machines based on pre-determined runtimes.

4.3.3 System design

Stratus is a VC scheduler designed to achieve cost-effective job execution on public IaaS clouds, combining
a new elasticity-aware packing algorithm with a cost-aware cluster scaler that exploits cloud instance type
diversity and instance pricing variation. Stratus reduces cost in two ways: (1) by aligning task runtimes
so (ideally) all tasks on an instance finish at the same time, allowing it to transition quickly from near-full
utilization to being released and (2) by selecting which new instance types to acquire during scale-out in
tandem with task packing decisions. Fig. 6 presents the architecture and key components of Stratus, and
walks the reader through the lifetime of a job processed by Stratus.
Packer. We describe the on-line packing component of Stratus here, which places newly arriving tasks on to
already-running instances. The Scaler, which decides which new instances to acquire based on the packing
properties of tasks that cannot be packed on to running instances, uses a compatible scheme.

The primary objective of Stratus is to minimize the cloud bill of the VC, which is driven mostly by the
amount of resource-time purchased to complete the workload. Thus, the packer aims to pack tasks tightly,
aligning remaining runtimes of tasks running on an instance as closely as possible to each other; otherwise,
some tasks will complete faster than others and some of the instance’s capacity will be wasted.

The inputs to the packer are: (1) Queue of pending task requests, where each task request contains the
task’s resource vector (VCores and memory), estimated runtime, priority, and scheduling constraints (e.g.,
anti-affinity and hardware requirements). (2) Set of available instances. For each instance, Stratus tracks
the amount of resource available on the instance and the remaining runtimes of each task assigned to the
instance (i.e., time required for the task to complete).

The packer maintains logical bins characterized by disjoint runtime intervals. Each bin contains tasks
with remaining runtimes that fall within the interval of the bin. Similarly, an instance is assigned to a bin
according to the remaining runtime of the instance, which is the longest remaining runtime of the tasks
assigned to the instance. In both cases, the boundaries of the intervals are defined exponentially, where the
interval for the ith bin is [2i−1, 2i). We compare runtime bins according to the upper-bound of their defined
runtime intervals—i.e., the smallest bins are bins with runtime intervals [0, 1), [1, 2), [2, 4), . . . , and so on.
Packer algorithm. At the beginning of a scheduling event, the packer organizes tasks and instances into

14

Runtime env
Stratus

Scheduler

Applications

(1
)

jo
bs

Resource
manager RM Proxy

(2) tasks

Packer

IaaS
cloud

Cloud
Connector

(5) scale-out

(6) instance
request

(3
) t

as
ks

Scaler Runtime
Estimator(4) task runtime estimates

(9) completed tasks

(8) assignments
+ new instances
+ migrations

(7) assignments
+ new instances
+ migrations

Instance pool

Figure 6: This figure shows the architecture of Stratus and walks the reader through the lifetime of a job. (1) Job
requests are submitted by users and received by the Resource Manager (RM). (2) The RM spins off task requests
from the job and dispatches them to the RM Proxy, which is responsible for receiving task state events (e.g., new task
request) from the RM and routing them to the scheduler. (3) The scheduler consists of the packer and the scaler.
The packer decides which tasks get scheduled on which available instances. The scaler determines which and when
VM instances should be acquired for the cluster as well as when task migrations need to be performed. Given a task
request from the RM Proxy, the packer puts the task request into the scheduling queue. Pending tasks are scheduled
in batches during a periodic scheduling event. (4) The packer and scaler make scheduling and scaling decisions based
on task runtime estimates provided by a Runtime Estimator. (5) If there are tasks that cannot be scheduled on to any
available instances in the cluster, the packer relays the tasks to the scaler, which decides on the instances to acquire
for these tasks. The scaler sends the corresponding instance requests to the Cloud Connector, which is a pluggable
module that acquires and terminates instances from the cloud. (6) The Cloud Connector translates the request and
asynchronously calls IaaS cloud platform APIs to acquire new instances. When new instances are ready, the Cloud
Connector notifies the packer via an asynchronous callback. (7) The scheduler informs the RM of task placement
decisions, availability of new instances, and tasks to migrate at the end of a scheduling event. (8) The RM enforces
task placements and adds new instances to its pool of managed instances. (9) After tasks complete, completion events
are propagated to the RM. A job is completed when the RM receives all task completion events of the job’s tasks.

their appropriate bins. Tasks are then considered for placement in descending order by runtime—longest task
first. For each task, the Packer attempts to assign it to an available instance in two phases: the up-packing
phase and the down-packing phase.

We first describe the up-packing phase. In placing a task, the packer first looks at instances from the
same runtime bin as the task. If multiple instances are eligible for scheduling the task, the packer chooses the
instance with the remaining runtime closest to the runtime of the task. If the task cannot be scheduled on any
instance in its native runtime bin, the packer considers instances in progressively greater bins. If there are
multiple candidate instances from a greater bin, the task is assigned to the instance with the most available
resources. The reasoning is to leave as much room as possible in the instance, which will increase the chance
of being able to schedule tasks from the same bin on to the instance when tasks arrive in the future. If the
task cannot be scheduled on any instance, the packer proceeds to examine instances in the next-greatest bin
until all instances in greater bins have been examined. Fig. 7 shows a toy example of runtime binning in the
up-packing phase on a single instance over time.

After all greater bins have been examined for VMs to schedule the task on, the Packer examines
progressively lesser bins for a suitable VM in the down-packing phase, described here. If there are multiple
candidate VMs from a lesser bin Stratus, like when up-packing, finds the VM with the most available resources
that the task fits on. Down-packing the task promotes the VM to the task’s native runtime bin. While
promoting an instance may cause task runtime misalignments on an instance, it is counter-intuitively beneficial
in practice. Since tasks with similar runtimes and resource requests are often submitted concurrently/in
close-succession for batch data processing jobs, promoting a large, poorly-packed instance may allow for
more opportunities to fully utilize the instance with unscheduled tasks of such a job. Promoting an instance
also increases the chance of better utilizing the instance in later scheduling cycles, since tasks are always

15

0 1 2 4 8 16 32 Time
(seconds)

Task A
Task B

Task C

Instance
bin

(a) Tasks A, B, and C scheduled. All tasks in [16, 32)
bin. Instance in [16, 32) bin. One empty slot.

0 1 2 4 8 16 32 Time
(seconds)

Task A
Task B

Task C

Task D Instance
bin

(b) Time progresses and tasks A and B move down to
[8, 16) bin. Task C remains in [16, 32) bin. Task D
scheduled on instance in [16, 32) bin. Instance remains
in [16, 32) bin. Instance is full.

0 1 2 4 8 16 32 Time
(seconds)

Task D

Task C
Task E

Instance
bin

(c) Time progresses as tasks A and B finish. Task C
moves down to [4, 8), and D moves down to [8, 16) bin.
Task E is up-packed to the instance and placed in [1, 2)
bin. Instance moves down to [8, 16) bin. One empty slot.

Figure 7: Toy example showing how runtime binning works with the scheduling of tasks on to an instance over time
(subfig. a–c). This simple example assumes all tasks are uniformly sized, and that the instance can hold four tasks in
total. The solid gray box outlines the instance. Runtime bins are color-coded (e.g., blue and red represent bins [16,
32) and [8, 16), respectively). Bars inside the instance represent tasks assigned to it. Task bars are color-coded to the
bins they are assigned to. The dotted box shows the runtime bin that the instance assigned to.

up-packed prior to being down-packed. Furthermore, if task runtimes are already inaccurate, it is likely that
some of the tasks assigned to an instance in fact belong in some greater bin, especially if an instance is large.
Scaler. When Stratus cannot accommodate all tasks in a scheduling event, it scales out immediately and
acquires new instances for unscheduled tasks. Stratus’s process of deciding which instances to acquire is
iterative. It decides on a new instance to acquire at the end of each iteration, assigns unscheduled tasks to
the instance, and continues until each unscheduled task is assigned to a new instance.

During scale-out, Stratus considers task packing options together with instance type options, seeking to
achieve the most cost-efficient combination. In each iteration, it considers unscheduled tasks in each bin in
descending order of runtime bins. The scaler constructs several candidate groups of tasks to be placed on the
new instance. Each candidate group is assigned a cost-efficiency score7 for each possible instance type. The
candidate group with the greatest cost-efficiency score is assigned to its best-scoring instance type, which is
acquired and added to the virtual cluster. Considering both (task packing and instance type selection) in
tandem is crucial to achieving high cost-efficiency. Our approach balances the complexity of the large search
space of combinations of task-potential instance assignments while exploring varied points in that space.

At the end of each scale-out iteration, the candidate <task group, instance> pair with the best cost-
efficiency score is chosen, and the corresponding task group is scheduled on to the instance. If there remains
any unscheduled tasks, the scaler begins another iteration and continues until all tasks are scheduled.
Scaling in. Stratus terminates instances when: (1) when an instance does not have any tasks assigned to it
or (2) when it continuously experiences low utilization, in which case its tasks are migrated off of it.
Runtime estimates. Runtime Estimator is the component that provides runtime estimates from a queryable
task runtime estimate system for tasks submitted to Stratus. Stratus uses a modified copy of JVuPredict [38]
to predict average task runtime rather than job runtime.
Handling runtime misestimates. While Stratus’s use of exponentially-sized runtime bins already tolerates
task runtime misestimates to a degree, we introduce two specialized heuristics to deal with larger misestimates:
(1) Stratus readjusts task runtime underestimates by assuming that the task has already run for half of
its runtime [18]. (2) Stratus migrates tasks away from instances that continuously experience low resource

7Computed as normalized used constraining resource
instance price

, where the numerator is the amount of resource of the most heavily utilized

resource type by percentage (specified as type r) of a hypothetical <task group, instance> assignment, divided by the amount of
resource of type r available on the smallest instance that we can acquire. This is used to facilitate comparisons across <task
group, instance> pairs with different constraining resource types.

16

Google TwoSigma
0.0

0.2

0.4

0.6

0.8

1.0

1.2
No

rm
al

ize
d

co
st $490 $3029

Stratus
Fleet

HSpot
SCloud

(a) Average daily cost for each VC scheduler on
the Google and TwoSigma workloads, normalized
to the most costly option for the given trace.

Google TwoSigma
0

20

40

60

80

100

Re
so

ur
ce

 u
til

iza
tio

n
(%

) Stratus
Fleet

HSpot
SCloud

(b) Constraining resource utilization (VCores
for Google and memory for TwoSigma) with the
different VC schedulers.

Figure 8: The figures compare Stratus against other VC schedulers in cost and average resource utilization.

utilization8 due to task runtime mis-alignments. For each instance chosen for migration, either all or none of
its tasks are migrated, where migrated tasks are re-packed using Packer’s heuristics.

4.3.4 Evaluation

This section evaluates Stratus’s effectiveness, with more details available in our paper [13].
Simulator. We run simulation experiments using an event-based workload simulator to evaluate Stratus
against other VC scheduling approaches. The simulator simulates instance allocation and task placement
decisions made by schedulers, and considers instance spin-up delays consistent with observations on AWS.
Container migration times are computed based on the container’s memory footprint and a transfer rate of
160MBps for container memory [34]. To simulate the effect of spot market price movements, we use price
traces provided by Amazon [8] spanning a three month period.
Instance types and regions available. We limit our experiments to use instances of the m4 family in
EC2 to avoid unknown performance comparisons among compute resources. We assume that valid instance
requests are always fulfilled, and limit instance allocations to the us-west-2 region.
VM acquisition/termination. For all evaluated schedulers, (1) instances are bid for at or above the
on-demand price, and (2) are voluntarily released when no more tasks are running on it.
Workload traces. Our experiments use two traces from production clusters: the Google trace [30, 29] and
the TwoSigma Trace. We filter out jobs that start before the trace start time and jobs that end after the
trace end time. More details with regards to workload traces can be found in our paper [13].
Assumptions. We make the following assumptions about tasks in our simulation workloads: (1) tasks can
be migrated without losing progress potentially using checkpoint-restore solutions, (2) tasks do not have any
hard placement constraints other than (for some) anti-affinity, (3) there are no inter-task dependencies in the
workloads, and (4) decisions regarding task co-location have minimal impact on task runtimes.
Alternative schedulers evaluated. Our experiments compare Stratus against a few reasonable, alternative
VC scheduling solutions pieced together from related systems described in §4.3.2. Components of each VC
scheduler implemented as closely as possible to its source documentation. The schedulers are described below:

(1) HSpot is a task-per-instance VC scheduler that implements HotSpot’s migration and scaling policies,
enhanced with perfect runtime knowledge. (2) Fleet is a VC scheduler that combines the most cost-efficient
VM acquisition policy in AWS Spot Fleet (lowestPrice [4]) with the most cost-efficient packing strategy in
ECS (binpack [1]). (3) SCloud is a VC scheduler that uses SuperCloud-Spot’s greedy packing algorithm to
schedule tasks on instances, enhanced with HotSpot’s migration scheme and perfect task runtime knowledge.
Results: Cost savings. Fig. 8a shows the average costs of scheduling the Google and TwoSigma workloads

8We define such an instance as one whose resources are less than 50% utilized in each dimension, since this is often when all
tasks on an instance can be migrated to a smaller instance based on how many CSPs size their VMs [3, 6, 7].

17

for each VC scheduler, normalized to the most expensive case for each trace. Stratus outperforms HSpot by
reducing the cloud bill by 25% (Google) and 31% (TwoSigma) through continuously packing newly arriving
tasks on to cost-effective instances. Stratus also reduces cost by 44% (Google) and 17% (TwoSigma) compared
to SCloud. While ideas from SuperCloud-Spot may have been well-suited for long-running services, they do
not carry over well to workloads where task runtimes greatly vary. SCloud’s scaling algorithm often bids for
large VMs to reduce fragmentation and improve cost-per-resource at the time of packing. But, if task runtimes
on the VM are misaligned, the large VMs acquired by SCloud will often be under-utilized as tasks on the VM
complete at different times. Stratus reduces the cloud bill of Fleet by 17% (Google) and 22% (TwoSigma).
Fleet’s on-line packing is not as effective as Stratus’s packing due to its use of Spot Fleet’s lowestPrice
scaling method. Fleet always acquires the cheapest (often the tightest-fitting) instances for newly arriving
tasks, leaving little room to pack more tasks on an instance and leading to greater resource fragmentation.
In addition, the cheapest instance for a task may not be the most cost-efficient instance for pending tasks.
By considering the packing of groups of tasks and their runtime alignments while selecting instance types,
Stratus is able to achieve lower fragmentation and acquire instances with better cost-per-resource-used.
Results: Resource utilization. Much of Stratus’s cost reduction comes from increased utilization of rented
resources. Fig. 8b shows the utilization of the constraining resource (VCore in the case of the Google trace
and memory for TwoSigma) for evaluated VC schedulers. Stratus attains the highest resource utilization,
achieving 86% and 79% utilization for the two workloads. Stratus’s high resource utilization results from its
combination of aligning task runtimes in tasks packed onto a given instance, acquiring instances of suitable
sizes, and judicious use of instance clearing to avoid retaining under-utilized instances on which most tasks
already completed. Stratus’s selection of instance types during scale-out in light of different possible packing
configurations, rather than only considering packing after selection, greatly increases utilization.

5 Proposed thesis timeline

Time Plan

Nov. 2019 Submission of inter-job dependency analysis paper to EuroSys 2020

Dec. 2019 – Feb. 2020
Design and initial implementation of Talon
Thesis proposal preparation

Feb. 2020 Thesis proposal
Feb. – Apr. 2020 Experiment design and refinement of Talon
May – Dec. 2020 Finish experiments on Talon and paper submissions (targeting OSDI 2020)
Jan. – May 2021 Dissertation writing, defense, and job search

References

[1] Amazon Elastic Container Service (2019). https://aws.amazon.com/ecs/.

[2] AWS Autoscale (2019). https://aws.amazon.com/autoscaling/.

[3] AWS EC2 (2019). http://aws.amazon.com/ec2/.

[4] AWS EC2 Spot Fleet (2019). https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html.

[5] AWS Fargate (2019). https://aws.amazon.com/AWS/Fargate.

[6] Azure Virtual Machines (2019). https://azure.microsoft.com/en-us/services/virtual-machines/.

[7] Google Compute Engine (2019). https://cloud.google.com/compute/.

[8] Spot Instance Pricing History (2019). https://aws.amazon.com/ec2/spot/.

[9] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. Deconstructing amazon ec2 spot
instance pricing. ACM Trans. Econ. Comput., 1(3):16:1–16:20, Sept. 2013.

18

https://aws.amazon.com/ecs/
https://aws.amazon.com/autoscaling/
http://aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
https://aws.amazon.com/AWS/Fargate
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute/
https://aws.amazon.com/ec2/spot/

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A berkeley view of cloud computing. Technical
Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley, Feb 2009.

[11] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable
and coordinated scheduling for cloud-scale computing. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI’14, pages 285–300, Berkeley, CA, USA, 2014.
USENIX Association.

[12] A. Chung, C. Curino, S. Krishnan, K. Karanasos, P. Garefalakis, and G. R. Ganger. Peering through
the dark: An owl’s view of inter-job dependencies and jobs’ impact in shared clusters. In Proceedings of
the 2019 International Conference on Management of Data, SIGMOD ’19, pages 1889–1892, New York,
NY, USA, 2019. ACM.

[13] A. Chung, J. W. Park, and G. R. Ganger. Stratus: Cost-aware container scheduling in the public cloud.
In Proceedings of the ACM Symposium on Cloud Computing, SoCC ’18, pages 121–134, New York, NY,
USA, 2018. ACM.

[14] P. Danzig, J. Mogul, V. Paxson, and M. Schwartz. The internet traffic archive. http://ita.ee.lbl.gov/,
2000.

[15] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey: Guaranteed job latency
in data parallel clusters. In Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 99–112, New York, NY, USA, 2012. ACM.

[16] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch. Autoscale: Dynamic, robust
capacity management for multi-tier data centers. ACM Trans. Comput. Syst., 30(4), Nov. 2012.

[17] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and S. E. Whang. Goods: Organizing
google’s datasets. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD
’16, pages 795–806, New York, NY, USA, 2016. ACM.

[18] M. Harchol-Balter and A. B. Downey. Exploiting process lifetime distributions for dynamic load balancing.
In ACM SIGMETRICS Performance Evaluation Review, volume 24, pages 13–24. ACM, 1996.

[19] A. Harlap, A. Chung, A. Tumanov, G. R. Ganger, and P. B. Gibbons. Tributary: Spot-dancing for
elastic services with latency slos. In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’18, pages 1–13, Berkeley, CA, USA, 2018. USENIX Association.

[20] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons. Proteus: Agile ml elasticity
through tiered reliability in dynamic resource markets. In Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys ’17, pages 589–604, New York, NY, USA, 2017. ACM.

[21] J. A. Hoxmeier and C. DiCesare. System response time and user satisfaction: An experimental study of
browser-based applications. AMCIS 2000 Proceedings, page 347, 2000.

[22] Q. Jia, Z. Shen, W. Song, R. van Renesse, and H. Weatherspoon. Smart spot instances for the supercloud.
In Proceedings of the 3rd Workshop on CrossCloud Infrastructures & Platforms, page 5. ACM, 2016.

[23] S. A. Jyothi, C. Curino, I. Menache, S. Matthur Narayanamurthy, A. Tumanov, J. Yaniv, R. Mavlyutov,
I. Goiri, S. Venkatraman Krishnan, J. Kulkarni, and S. Rao. Morpheus: Towards automated slos for
enterprise clusters. In 2016 International Symposium on Operating Systems Design and Implementation
(OSDI), November 2016.

[24] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M. Fumarola, S. Heddaya, R. Ra-
makrishnan, and S. Sakalanaga. Mercury: Hybrid centralized and distributed scheduling in large shared
clusters. In Proceedings of the 2015 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’15, pages 485–497, Berkeley, CA, USA, 2015. USENIX Association.

19

http://ita.ee.lbl.gov/

[25] T. Knauth and C. Fetzer. Energy-aware scheduling for infrastructure clouds. In Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International Conference on, pages 58–65. IEEE,
2012.

[26] R. Kohavi and R. Longbotham. Online experiments: Lessons learned. Computer, 40(9), 2007.

[27] Netflix Technology Blog. Creating Your Own EC2 Spot Market. https://medium.com/netflix-techblog/
creating-your-own-ec2-spot-market-6dd001875f5, Apr 2017.

[28] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger. 3sigma: Distribution-based cluster
scheduling for runtime uncertainty. In Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18,
pages 2:1–2:17, New York, NY, USA, 2018. ACM.

[29] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity and dynamicity of
clouds at scale: Google trace analysis. In Proceedings of the Third ACM Symposium on Cloud Computing,
page 7. ACM, 2012.

[30] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google cluster-usage traces: format + schema. Google Inc.,
White Paper, pages 1–14, 2011.

[31] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. Flint: Batch-interactive data-intensive processing
on transient servers. In Proceedings of the Eleventh European Conference on Computer Systems, EuroSys
’16, pages 6:1–6:15, New York, NY, USA, 2016. ACM.

[32] P. Sharma, D. Irwin, and P. Shenoy. Portfolio-driven resource management for transient cloud servers.
Proc. ACM Meas. Anal. Comput. Syst., 1(1):5:1–5:23, June 2017.

[33] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity provisioning system for the cloud.
In 2011 31st International Conference on Distributed Computing Systems, pages 559–570, June 2011.

[34] S. Shastri and D. Irwin. Hotspot: automated server hopping in cloud spot markets. In Proceedings of
the 2017 Symposium on Cloud Computing, pages 493–505. ACM, 2017.

[35] Z. Shen, Q. Jia, G.-E. Sela, W. Song, H. Weatherspoon, and R. Van Renesse. Supercloud: A library
cloud for exploiting cloud diversity. ACM Transactions on Computer Systems (TOCS), 35(2):6, 2017.

[36] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken. Using a market economy to provision
compute resources across planet-wide clusters. In 2009 IEEE International Symposium on Parallel
Distributed Processing, pages 1–8, May 2009.

[37] H. Tian, Y. Zheng, and W. Wang. Characterizing and synthesizing task dependencies of data-parallel
jobs in alibaba cloud. SoCC ’19 (To appear), 2019.

[38] A. Tumanov, A. Jiang, J. W. Park, M. A. Kozuch, and G. R. Ganger. Jamaisvu: Robust scheduling with
auto-estimated job runtimes. Technical report, Technical Report CMU-PDL-16-104. Carnegie Mellon
University, 2016.

[39] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger. Tetrisched:
Global rescheduling with adaptive plan-ahead in dynamic heterogeneous clusters. In Proceedings of the
Eleventh European Conference on Computer Systems, EuroSys ’16, pages 35:1–35:16, New York, NY,
USA, 2016. ACM.

[40] WAND Network Research Group. Wits: Waikato internet traffic storage. http://wand.net.nz/wits/index.
php.

20

https://medium.com/netflix-techblog/creating-your-own-ec2-spot-market-6dd001875f5
https://medium.com/netflix-techblog/creating-your-own-ec2-spot-market-6dd001875f5
http://wand.net.nz/wits/index.php
http://wand.net.nz/wits/index.php

	Introduction
	Thesis statement
	Realizing value through dependency-aware resource management
	Background and motivation
	Ongoing work: Analysis of inter-job dependencies in Cosmos: Challenges & opportunities for resource management
	Planned work: Value-aware, inter-job dependency driven scheduling
	Today's production clusters: priority based scheduling and automating job values
	Dependency-driven utility functions
	Talon: Value-aware, inter-job dependency driven scheduling

	Realizing value through user applications
	Background
	Public vs private clouds
	VM instance offerings in clouds — AWS EC2 as a concrete example

	Tributary: Spot-dancing for elastic services with latency SLOs
	Problem statement and challenges
	Tributary-specific background and related work
	System design
	Evaluation

	Stratus: Cost-aware container scheduling in the public cloud
	Problem statement and challenges
	Stratus-specific background and related work
	System design
	Evaluation

	Proposed thesis timeline

