
Realizing value in shared
compute infrastructures

Andrew Chung
Thesis Committee:
Greg Ganger (Chair)

Phil Gibbons
George Amvrosiadis

Carlo Curino (Microsoft GSL)

Andrew Chung © February 20http://www.pdl.cmu.edu/ 2

Talk outline
• Shared cluster environments
• Thesis statement
• Prior work: Realizing value through user applications
• Ongoing work: Realizing value through dependency-

aware resource management
• Thesis timeline

Shared cluster environments
• Highly heterogeneous resources and applications

• Many users from various groups and organizations
• Increasingly-common:

• Data shared across users, groups, and organizations
• Examples of shared cluster environments:

• Public clouds (AWS, Azure, GCE)
• Private clouds (Microsoft’s Cosmos clusters)

Andrew Chung © February 20http://www.pdl.cmu.edu/ 3

Example: Shared cluster environment

Andrew Chung © February 20http://www.pdl.cmu.edu/ 4

Storage
Org 1

Org 2

Org 3

W1

Running
applications

Compute

R2
W2

R3 W3

User goals
• Users: Run applications in shared environment

• Goal 1: Meet application business requirements
• Goal 2: Cost-effective resource acquisition

• Challenges:
• Resource heterogeneity
• Wide variety of pricing mechanisms

Andrew Chung © February 20http://www.pdl.cmu.edu/ 5

Cluster operator goals
• Cluster operators: Maximize profit & satisfy users

• Goal 1: Prioritize resource allocation to applications

–Using some notion of “user value”

• Goal 2: Efficiently manage cluster operation costs
• Challenges:

• Resource heterogeneity and availability
• Hidden user values and performance requirements

Andrew Chung © February 20http://www.pdl.cmu.edu/ 6

Thesis statement

Value-realized in shared data environments can be
improved both by value- and dependency-aware resource
management systems from cluster operators and by cost-
and heterogeneity-aware applications from users.

Andrew Chung © February 20http://www.pdl.cmu.edu/ 7

Realizing value through
user application frameworks

Background: Public clouds
• Public clouds offer a variety of resources

• e.g., varying compute capacity, storage, HW accelerators
• Under different types of contracts

• e.g., reliable, transient, and burst
• Difficult for users to choose resources cost-effectively!

Andrew Chung © February 20http://www.pdl.cmu.edu/ 9

Achieve user value through:
Application-specific, cost-aware resource acquisition

Application-specific resource acquisition: Case studies
1. Elastic web services

• Spot-dancing for elastic services with latency SLOs
• Tributary [USENIX ATC 2018]

2. General containerized batch task scheduling
• Cost-aware container scheduling in the public cloud
• Stratus [ACM SoCC 2018]

–Best student paper award

Andrew Chung © February 20http://www.pdl.cmu.edu/ 10

Transient/spot instances in AWS EC2

Andrew Chung © February 20http://www.pdl.cmu.edu/ 11

$2.00

$1.00

$0.00
10/01 10/16 11/01 11/16 12/01

On-demand price
M4.10xlarge
in us-east-1b

Bid price

Market price Revocation

Adv: Often > 50% cheaper vs on-demand, refund if revoked in 1st hr

Transient/spot instances in AWS EC2

Andrew Chung © February 20http://www.pdl.cmu.edu/ 12

$2.00

$1.00

$0.00

10/01 10/16 11/01 11/16 12/01

On-demand price M4.10xlarge

Bid price

Adv: Often > 50% cheaper vs on-demand, refund if revoked in 1st hr

Application-specific resource acquisition: Case studies
1. Elastic web services

• Spot-dancing for elastic services with latency SLOs
• Tributary [USENIX ATC 2018]

2. General containerized batch task scheduling
• Cost-aware container scheduling in the public cloud
• Stratus [ACM SoCC 2018]

–Best student paper award

Andrew Chung © February 20http://www.pdl.cmu.edu/ 13

Elastic web services & spot instances
• Elastic web services

• Manage a pool of VMs to serve client requests
• Need to meet latency SLOs

– e.g., complete request within X milliseconds
• Spot instances are cheaper but riskier than on-demand:

• Instances can be revoked, leading to missed SLOs

Andrew Chung © February 20http://www.pdl.cmu.edu/ 14

Tributary embraces risk associated w/ spot
instances to achieve lower cost while meeting SLOs

Tributary summary
• Naïve selection of spot instances à bulk revocations
• Tributary handles bulk revocations:

• Uses different bids within the same spot market
– Higher/lower bid à less revocation risk/more partial-hours

• Selects resources from multiple spot markets
– Markets in same region (diff AZ) may not be correlated

• ML-based prob model à extra resources acquired
– Added benefit: soaks up unexpected spikes
– Cost offset by using lower cost VMs and free partial hours

Andrew Chung © February 20http://www.pdl.cmu.edu/ 15

Tributary experimental results and takeaway
• Experimental results

• Compared systems
– AutoScale [AWS], ExoSphere [Sharma ‘17], Proteus [Harlap ‘17]

• Cost reduction by > 21%, decrease SLO misses by > 31%
• Reduces cost by > 47% for same SLO attainment

• Takeaway
• Diversified resource pools to mitigate revocation risk

– Probability model à diverse + extra resources à SLO attained
• Expected cost + free partial-hours à lower cost for SLO attained

Andrew Chung © February 20http://www.pdl.cmu.edu/ 16

Application-specific resource acquisition: Case studies
1. Elastic web services

• Spot-dancing for elastic services with latency SLOs
• Tributary [USENIX ATC 2018]

2. General containerized batch task scheduling
• Cost-aware container scheduling in the public cloud
• Stratus [ACM SoCC 2018]

–Best student paper award

Andrew Chung © February 20http://www.pdl.cmu.edu/ 17

Background and motivation
• Virtual cluster (VC) scheduling:

• Schedule containerized batch tasks on to rented VMs
– IaaS CSPs provide a diverse mix of VM offerings

• Different from traditional cluster scheduling:
– Add/remove VMs any time à dynamically sized
– VC can be highly heterogeneous

Andrew Chung © February 20http://www.pdl.cmu.edu/ 18

Stratus takes advantage of diverse offerings and VC
elasticity to lower cost of executing batch workloads

Virtual cluster (VC) scheduling properties
1. Wasted resource-time is wasted money

• Keys to save money:
– VMs should be highly utilized while rented
– Use cost-efficient resources

• Resource prices may fluctuate e.g., in spot markets

2. Possible to have no task queue time
• Replaced by VM spin-up time
• Allows bounded workload latency

Andrew Chung © February 20http://www.pdl.cmu.edu/ 19

Stratus
• VC scheduling middleware for public clouds

• Suited for collections of batch jobs
• How to size VC and where to place tasks

• Goal: Lower cost of executing batch workloads
• Cost-efficiency by reducing idle VM resource-time
• Makespan-min by scheduling tasks as they arrive

Andrew Chung © February 20http://www.pdl.cmu.edu/ 20

Runtime binning: Pack tasks of similar runtime on to VM

Runtime binning: Notation (simplified)
• VMs specified by “tables”
• Task slots specified by “rows”
• Time-from-now (seconds) specified by “columns”
• Ex: 1 VM, 3 task slots, 16 seconds (0s = now)

Andrew Chung © February 20http://www.pdl.cmu.edu/ 21

0 1 2 4 8 16

Task slot 1
Task slot 2
Task slot 3

Time from now (in seconds)

Aligning runtimes: Runtime binning
• Runtime bins: Logical groups of tasks and VMs

• Tasks binned by estimated remaining runtime
• VMs binned by longest-remaining (estimated) task on VM

• Notation: Runtime bin specified by color

Andrew Chung © February 20http://www.pdl.cmu.edu/ 22

0 1 2 4 8 16

Bin colors
1
2
4
8

16

Task A
Task B
Task C

VM bin

Absolute time: 0s

Aligning runtimes: Runtime binning
• Runtime bins: Logical groups of tasks and VMs

• Tasks binned by estimated remaining runtime
• VMs binned by longest-remaining (estimated) task on VM

• Notation: Runtime bin specified by color

Andrew Chung © February 20http://www.pdl.cmu.edu/ 23

0 1 2 4 8 16

Bin colors
1
2
4
8

16

Task A
Task B
Task C

VM bin

Absolute time: 5s

Aligning runtimes: Runtime binning
• Runtime bins: Logical groups of tasks and VMs

• Tasks binned by estimated remaining runtime
• VMs binned by longest-remaining (estimated) task on VM

• Notation: Runtime bin specified by color

Andrew Chung © February 20http://www.pdl.cmu.edu/ 24

0 1 2 4 8 16

Bin colors
1
2
4
8

16

Task A
Task B
Task C

VM bin VM bin changed!

Absolute time: 8s

Packing tasks to VMs
• Each VC manages multiple VMs

• Each assigned a runtime bin based on its longest-running task
• VMs released when no tasks running on it

• Packing preference for new task T:
• VM in T’s runtime bin > VM in greater bins > VM in lesser bins

– Imposes least impact to extend VM time-to-release
• Only scale out as last resort

• Scaling out:
• Hypothetical packings + cost-per-resource considerations

Andrew Chung © February 20http://www.pdl.cmu.edu/ 25

Example: Packing tasks to VMs
• VM in T’s runtime bin > VM in greater bins > VM in lesser bins
• Least impact to extend VM time-to-release
• Only scale out as last resort

Andrew Chung © February 20http://www.pdl.cmu.edu/ 26

Tries here

Tries here

Tries here

Full

Full

Full

Task T
VM 1

VM 2

VM 3

Scale out

Exponentially-sized runtime bins
• Longer tasks:

• Greater mis-estimates in absolute
• Greater straggler effect in absolute

• Short tasks fill in “gaps” as long tasks complete out-of-sync

Andrew Chung © February 20http://www.pdl.cmu.edu/ 27

0 1 2 4 8 16

Bin colors
1
2
4
8
16

Task slot 1
Task slot 2
Task slot 3

Experimental setup

Andrew Chung © February 20http://www.pdl.cmu.edu/ 28

• Simulation-based experiments
• Google and Two-Sigma cluster traces

• Task estimates with JVuPredict
• Modified, aggregate stats-based job runtime predictor

• Focus on batch jobs
• Filter out jobs running > 1 day

• Spot market traces for dynamically priced VMs
• Always bid on-demand price – little to no preemptions

Stratus vs Fleet
• Fleet: SpotFleet + ECS (Amazon offerings)
• Stratus reduces cost by 17% (Google) and 22% (TwoSigma)

Andrew Chung © February 20http://www.pdl.cmu.edu/ 29

0

0.25

0.5

0.75

1

Google TwoSigma

N
or

m
al

iz
ed

 c
os

t

Fleet
Stratus

Stratus takeaway

Andrew Chung © February 20http://www.pdl.cmu.edu/ 30

• Runtime binning à high VM utilization during rental
• Simultaneous consideration of scaling, packing, and

cost-per-resource leads to reduced cost
• Reduces cost by at least 17% vs other solutions

• SpotFleet [AWS], HotSpot [Shastri ‘17], SuperCloud [Jia ‘16]

Realizing value through dependency-
aware resource management

Background: Cosmos

• Microsoft’s internal big data analytics platform

• Data from single Cosmos cluster (> 50k servers)

• Mostly batch analytics jobs

• e.g., Spark, MR-like jobs

• > 80% dedicated capacity

• Over 3 months: > 4 mil batch jobs submitted

• Many recurring jobs (> 65%)

• Jobs that are submitted many times over time

32

Storage
Org 1

Org 2

Org 3

W1

Running
applications

Compute

R2 W2

R3 W3

Sharing data à job dependencies

33

Inter-job dep

Inter-job dep

depends on depends on

Storage
Org 1

Org 2

Org 3

W1

Running
applications

Compute

R2 W2

R3 W3

Sharing data à job dependencies

34

Inter-job dep

Inter-job dep

downstream of downstream of

Inter-job dependencies are prevalent!
• Of the 4 mil batch jobs analyzed:

• > 80% of jobs dep on another’s output
• ~16 mil dependencies

– ~79% deps are recurring
• 95% of orgs rely on data generated

by jobs of another org
– Often no coordination

Dependencies are very prevalent;
but, we know very little about what they look like

35

Inter-job dependencies are prevalent!
• Of the 4 mil batch jobs analyzed:

• > 80% of jobs dep on another’s output
• ~16 mil dependencies

– ~79% deps are recurring
• 95% of orgs rely on data generated

by jobs of another org
– Often no coordination

Inter-job dependencies present a whole new
avenue that system designers can explore!

36

Ongoing and proposed work
• Analysis of inter-job dependencies

– Visualization [SIGMOD 2019 demo]
– Observations + characterization [Under submission]

• Proposed: Opportunities using inter-job dependencies
in resource management to realize more user value
– Better job valuation à better job scheduling

37

Job valuation and scheduling
• Manual job priority assignments in most prod clusters

• Used to determine job resource acquisition order
• Want: Assignments to reflect job’s monetary value
• Or at least: Principled, consistent assignments
• Realistically: Manual priority assignments are unreliable!

– 26% recurring dependencies set with inverted priorities
– 33% ad-hoc jobs w/ priority > avg recurring job

• Many recurring jobs are production jobs

Andrew Chung © February 20http://www.pdl.cmu.edu/ 38

Opportunity: Deps can help w/ valuation
• > 50% of jobs connected in a single dependency subgraph
• 28% recurring jobs are submitted “input-blind”

• i.e., downstream job requires upstream output to run,
but no coordination between up/downstream

• Most subgraphs have more leaves than roots:
• 83x more leaves than roots in largest subgraph

Some jobs more impactful than others:
Historical job dependencies + telemetry à expose job value

39

Value flow: Overview
• Job valuation target:

• Recurring jobs (> 65% of jobs)
• Assumption:

• Each job has “inherent value”
– User- and job-metrics as proxy

• Value for each job:
• Aggregated value of

job and its downstream jobs
– Downstream jobs “contribute” value upstream

40

If each job 10 downloads,
user-value(root) = 70 downloads

Value flow: An example

A B
D

E

Value

C

Value(A)

41

Evaluating dependency-based valuation
• 6 highly important recurring jobs

• Curated by RM team, (should) have very high assigned priority
• Ranking with Owl’s heuristic

• Metric: Aggregate downloads as value-proxy
• 5 / 6 in top 4% of jobs, one outlier at top 11%
• 4 / 6 with relative ranking within 5% of priority-based rankings

– One ranked 50% higher vs priority-based (49th %ile by priority)
– One ranked lower than priority-based by 11%

• Mostly consistent w/ priority-based for very important jobs

Andrew Chung © February 20http://www.pdl.cmu.edu/ 42

Utility functions from inter-job deps
• Job value à priority may not be good enough

• Better: Value “realizable” by completing job at time T

• Example:
• Let priority(A) = value(A) = sum all value downstream
• If A late, downstream (e.g., B) can fail w/ missing input error
à A may not always realize value of B

A B
D

E

C

43

Address with dep-
driven utility functions

Utility functions
• Utility function

• Job value as a function of job completion time
• A common representation in scheduling literature:

Value

Time
Studied extensively, but none in the wild!

D
eadline

44

Dependency-driven utility function

A B
D

E

Value

C

Time

Value(A)

45

Data-driven “deadlines”
through dependencies

Owl: Real utility function [SIGMOD demo ‘19]

46

N
or

m
al

iz
ed

 jo
b

va
lu

e

Minutes from job submission

Shades of red: Jobs (darker à more recent)
Blue: Expected job utility function (average)

Utility function limitations in scheduling
• Utility functions, as a construct, cannot encode:

• Value when a job has multiple upstream jobs
• Dependency properties

$

%

&

47

Opportunity for something better:
Use properties of historical dependencies

Ongoing work: New data representation?
• Maybe: Utility functions not enough in some scenarios
• Ideal: For job, want entire historical graph of downstream

– Can be expensive if many jobs downstream
• Idea: Work-in-progress

• Keep track of potential jobs only one-hop downstream
– Probabilistic view of upcoming jobs with historical deps

• 79% of dependencies are recurring
• Aggregate info for jobs 2+ hops downstream

48

Talon: Scheduling with new data representation!

D E F G H

A B CJob queue

Expected
follow-on jobs

Recurring dep metadata:
• Dependency properties
• P(arriving | completed U queue)

49

Talon: In process of building

Ongoing work takeaway
• Inter-job dependencies à new opportunities!
• Dependency-aware job scheduling

• Better, data-driven, and hands-free job valuation
• Dependency-based utility functions
• New dependency-aware scheduling data representation

• Questions to explore:
• Is priority (based on historical value) good enough?
• How expressive are utility functions?
• Are new data representations better / necessary?

Andrew Chung © February 20http://www.pdl.cmu.edu/ 50

Overview: Contributions & ongoing work
• Realizing value through user application frameworks

1. Elastic web services: Tributary [USENIX ATC 2018]
2. General task scheduling: Stratus [ACM SoCC 2018]

• Best student paper award
• Realizing value through dependency-aware resource management

• Dependency visualization: Owl [SIGMOD demo 2019]
• Dependency analysis: Under submission
• Dependency-aware scheduling: Ongoing work

Andrew Chung © February 20http://www.pdl.cmu.edu/ 51

Proposed thesis timeline

Andrew Chung © February 20http://www.pdl.cmu.edu/ 52

Thank you!

