Realizing value in shared compute infrastructures

Andrew Chung

Thesis Committee: Greg Ganger (Chair) Phil Gibbons George Amvrosiadis Carlo Curino (Microsoft GSL)

Carnegie Mellon Parallel Data Laboratory

Talk outline

- Shared cluster environments
- Thesis statement
- Prior work: Realizing value through user applications
- Ongoing work: Realizing value through dependencyaware resource management
- Thesis timeline

olications endency-

Shared cluster environments

- Highly heterogeneous resources and applications
 - Many users from various groups and organizations
- Increasingly-common:
 - Data shared across users, groups, and organizations
- Examples of shared cluster environments:
 - Public clouds (AWS, Azure, GCE)
 - Private clouds (Microsoft's Cosmos clusters)

Example: Shared cluster environment

User goals

- Users: Run applications in shared environment
 - Goal 1: Meet application business requirements
 - Goal 2: Cost-effective resource acquisition
- Challenges:
 - Resource heterogeneity
 - Wide variety of pricing mechanisms

nt nents

Cluster operator goals

- **Cluster operators:** Maximize profit & satisfy users
 - Goal 1: Prioritize resource allocation to applications -Using some notion of "user value"
 - Goal 2: Efficiently manage cluster operation costs
- Challenges:
 - Resource heterogeneity and availability
 - Hidden user values and performance requirements

Thesis statement

Value-realized in shared data environments can be improved both by value- and dependency-aware resource management systems from cluster operators and by costand heterogeneity-aware applications from users.

Realizing value through user application frameworks

Carnegie Mellon Parallel Data Laboratory

Background: Public clouds

- Public clouds offer a variety of resources
 - e.g., varying compute capacity, storage, HW accelerators
- Under different types of contracts
 - e.g., reliable, transient, and burst
- Difficult for users to choose resources cost-effectively!

Achieve user value through: Application-specific, cost-aware resource acquisition

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Application-specific resource acquisition: Case studies

- 1. Elastic web services
 - Spot-dancing for elastic services with latency SLOs
 - Tributary [USENIX ATC 2018]
- 2. General containerized batch task scheduling
 - Cost-aware container scheduling in the public cloud
 - Stratus [ACM SoCC 2018] -Best student paper award

Transient/spot instances in AWS EC2

Adv: Often > 50% cheaper vs on-demand, refund if revoked in 1st hr

http://www.pdl.cmu.edu/

M4.10xlarge in us-east-1b

Transient/spot instances in AWS EC2 **Adv:** Often > 50% cheaper vs on-demand, refund if revoked in 1st hr

http://www.pdl.cmu.edu/

M4.10xlarge

Availability Zone

- us-east-1a
- us-east-1b
- us-east-1c
- us-east-1d
- us-east-1e
- us-east-1f

Application-specific resource acquisition: Case studies

- 1. Elastic web services
 - Spot-dancing for elastic services with latency SLOs
 - Tributary [USENIX ATC 2018]
- 2. General containerized batch task scheduling
 - Cost-aware container scheduling in the public cloud
 - Stratus [ACM SoCC 2018] -Best student paper award

Elastic web services & spot instances

- Elastic web services
 - Manage a pool of VMs to serve client requests
 - Need to meet latency SLOs

-e.g., complete request within X milliseconds

- Spot instances are *cheaper but riskier* than on-demand:
 - Instances can be revoked, leading to missed SLOs

Tributary embraces risk associated w/ spot instances to achieve lower cost while meeting SLOs

Tributary summary

- Naïve selection of spot instances \rightarrow bulk revocations
- Tributary handles bulk revocations:
 - Uses different bids within the same spot market -Higher/lower bid \rightarrow less revocation risk/more partial-hours
 - Selects resources from multiple spot markets –Markets in same region (diff AZ) may not be correlated
 - ML-based prob model \rightarrow extra resources acquired
 - -Added benefit: soaks up unexpected spikes
 - -Cost offset by using lower cost VMs and free partial hours

Carnegie Mellon Parallel Data Laboratory

Tributary experimental results and takeaway

- Experimental results
 - Compared systems
 - AutoScale [AWS], ExoSphere [Sharma '17], Proteus [Harlap '17]
 - Cost reduction by > 21%, decrease SLO misses by > 31%
 - Reduces cost by > 47% for same SLO attainment
- Takeaway
 - Diversified resource pools to mitigate revocation risk - Probability model \rightarrow diverse + extra resources \rightarrow SLO attained
 - Expected cost + free partial-hours \rightarrow lower cost for SLO attained

Application-specific resource acquisition: Case studies

- 1. Elastic web services
 - Spot-dancing for elastic services with latency SLOs
 - Tributary [USENIX ATC 2018]
- 2. General containerized batch task scheduling
 - Cost-aware container scheduling in the public cloud
 - Stratus [ACM SoCC 2018] -Best student paper award

Background and motivation

- Virtual cluster (VC) scheduling:
 - Schedule containerized batch tasks on to rented VMs – laaS CSPs provide a diverse mix of VM offerings
 - Different from traditional cluster scheduling: -Add/remove VMs any time \rightarrow dynamically sized
 - -VC can be highly heterogeneous

Stratus takes advantage of diverse offerings and VC elasticity to lower cost of executing batch workloads

Virtual cluster (VC) scheduling properties

- 1. Wasted resource-time is wasted money
 - Keys to save money:
 - VMs should be highly utilized while rented
 - Use cost-efficient resources
 - Resource prices may fluctuate e.g., in spot markets
- 2. Possible to have no task queue time
 - Replaced by VM spin-up time
 - Allows bounded workload latency

Stratus

- VC scheduling middleware for public clouds
 - Suited for collections of batch jobs
 - How to size VC and where to place tasks
- Goal: Lower cost of executing batch workloads
 - Cost-efficiency by reducing idle VM resource-time
 - Makespan-min by scheduling tasks as they arrive

Runtime binning: Pack tasks of similar runtime on to VM

Runtime binning: Notation (simplified)

- VMs specified by "tables"
- Task slots specified by "rows"
- Time-from-now (seconds) specified by "columns"
- Ex: 1 VM, 3 task slots, 16 seconds (0s = now)

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Task slot 1

Task slot 2

Task slot 3

Aligning runtimes: Runtime binning

- Runtime bins: Logical groups of tasks and VMs
 - Tasks binned by estimated remaining runtime
 - VMs binned by longest-remaining (estimated) task on VM
- Notation: Runtime bin specified by color

Aligning runtimes: Runtime binning

- Runtime bins: Logical groups of tasks and VMs
 - Tasks binned by estimated remaining runtime
 - VMs binned by longest-remaining (estimated) task on VM
- Notation: Runtime bin specified by color

http://www.pdl.cmu.edu/

Aligning runtimes: Runtime binning

- Runtime bins: Logical groups of tasks and VMs
 - Tasks binned by estimated remaining runtime
 - VMs binned by longest-remaining (estimated) task on VM
- Notation: Runtime bin specified by color

http://www.pdl.cmu.edu/

Task A Task B Task C 16 VM bin changed!

Packing tasks to VMs

- Each VC manages multiple VMs
 - Each assigned a runtime bin based on its longest-running task
 - VMs released when no tasks running on it
- Packing preference for new task T:
 - VM in T's runtime bin > VM in greater bins > VM in lesser bins Imposes least impact to extend VM time-to-release
 - Only scale out as last resort
- Scaling out:
 - Hypothetical packings + cost-per-resource considerations

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Example: Packing tasks to VMs

- VM in T's runtime bin > VM in greater bins > VM in lesser bins
- Least impact to extend VM time-to-release
- Only scale out as last resort

Exponentially-sized runtime bins

- Longer tasks:
 - Greater mis-estimates in absolute
 - Greater straggler effect in absolute
- Short tasks fill in "gaps" as long tasks complete out-of-sync

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Experimental setup

- Simulation-based experiments
 - Google and Two-Sigma cluster traces
- Task estimates with JVuPredict
 - Modified, aggregate stats-based job runtime predictor
- Focus on batch jobs
 - Filter out jobs running > 1 day
- Spot market traces for dynamically priced VMs
 - Always bid on-demand price little to no preemptions

Stratus vs Fleet

- Fleet: SpotFleet + ECS (Amazon offerings)
- Stratus reduces cost by 17% (Google) and 22% (TwoSigma)

Stratus takeaway

- Runtime binning → high VM utilization during rental
- Simultaneous consideration of scaling, packing, and cost-per-resource leads to reduced cost
- Reduces cost by at least 17% vs other solutions
 - SpotFleet [AWS], HotSpot [Shastri '17], SuperCloud [Jia '16]

g rental ing, and

ions oud [Jia '16]

Realizing value through dependencyaware resource management

Carnegie Mellon Parallel Data Laboratory

Background: Cosmos

- Microsoft's internal big data analytics platform
- Data from single Cosmos cluster (> 50k servers)
- Mostly batch analytics jobs
 - e.g., Spark, MR-like jobs
 - > 80% dedicated capacity
 - Over 3 months: > 4 mil batch jobs submitted
- Many recurring jobs (> 65%)
 - Jobs that are submitted many times over time

rm vers)

ne

Sharing data \rightarrow job dependencies

Carnegie Mellon Parallel Data Laboratory

Sharing data \rightarrow job dependencies

Inter-job dependencies are prevalent!

- Of the 4 mil batch jobs analyzed:
 - > 80% of jobs dep on another's output
 - ~16 mil dependencies
 - $-\sim79\%$ deps are recurring
 - 95% of orgs rely on data generated by jobs of another org

– Often no coordination

Dependencies are very prevalent; but, we know very little about what they look like

Carnegie Mellon Parallel Data Laboratory

Inter-job dependencies are prevalent!

- Of the 4 mil batch jobs analyzed:
 - > 80% of jobs dep on another's output
 - ~16 mil dependencies
 - $-\sim79\%$ deps are recurring
 - 95% of orgs rely on data generated by jobs of another org

-Often no coordination

Inter-job dependencies present a whole new avenue that system designers can explore!

Carnegie Mellon Parallel Data Laboratory

Ongoing and proposed work

- Analysis of inter-job dependencies
 - Visualization [SIGMOD 2019 demo]
 - Observations + characterization [Under submission]
- Proposed: Opportunities using inter-job dependencies in resource management to realize more user value
 - Better job valuation \rightarrow better job scheduling

Job valuation and scheduling

- Manual job priority assignments in most prod clusters
 - Used to determine job resource acquisition order
 - Want: Assignments to reflect job's monetary value
 - Or at least: Principled, consistent assignments
 - Realistically: Manual priority assignments are unreliable!
 - -26% recurring dependencies set with inverted priorities
 - -33% ad-hoc jobs w/ priority > avg recurring job
 - Many recurring jobs are production jobs

Opportunity: Deps can help w/ valuation

- > 50% of jobs connected in a single dependency subgraph
- 28% recurring jobs are submitted "input-blind"
 - i.e., downstream job requires upstream output to run, but no coordination between up/downstream
- Most subgraphs have more leaves than roots:
 - 83x more leaves than roots in largest subgraph

Some jobs more impactful than others: Historical job dependencies + telemetry \rightarrow expose job value

Carnegie Mellon Parallel Data Laboratory

Value flow: Overview

- Job valuation target:
 - Recurring jobs (> 65% of jobs)
- Assumption:
 - Each job has "inherent value"
 - User- and job-metrics as proxy
- Value for each job:
 - Aggregated value of job and its downstream jobs
 - Downstream jobs "contribute" value upstream

If each job 10 downloads, user-value(root) = 70 downloads

Evaluating dependency-based valuation

- 6 highly important recurring jobs
 - Curated by RM team, (should) have very high assigned priority
- Ranking with Owl's heuristic
 - Metric: Aggregate downloads as value-proxy
 - 5 / 6 in top 4% of jobs, one outlier at top 11%
 - 4 / 6 with relative ranking within 5% of priority-based rankings
 - One ranked 50% higher vs priority-based (49th %ile by priority)
 - One ranked lower than priority-based by 11%
- Mostly consistent w/ priority-based for very important jobs

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Utility functions from inter-job deps

- Job value \rightarrow priority may not be good enough
 - Better: Value "realizable" by completing job at time T
- Example:
 - Let priority(A) = value(A) = sum all value downstream
 - If A late, downstream (e.g., B) can fail w/ missing input error \rightarrow A may not always realize value of B

Address with depdriven utility functions

Carnegie Mellon Parallel Data Laboratory

Utility functions

- Utility function
 - Job value as a function of job completion time
- A common representation in scheduling literature: Value

Carnegie Mellon Parallel Data Laboratory

ne ure:

Dependency-driven utility function

Carnegie Mellon Parallel Data Laboratory

Owl: Real utility function [SIGMOD demo '19]

Carnegie Mellon Parallel Data Laboratory

Utility function limitations in scheduling

- Utility functions, as a construct, cannot encode:
 - Value when a job has multiple upstream jobs
 - Dependency properties

Opportunity for something better: Use properties of historical dependencies

Carnegie Mellon Parallel Data Laboratory

С

B

Ongoing work: New data representation?

- **Maybe:** Utility functions not enough in some scenarios ullet
- **Ideal:** For job, want entire historical graph of downstream - Can be expensive if many jobs downstream
- Idea: Work-in-progress
 - Keep track of *potential* jobs only one-hop downstream
 - Probabilistic view of upcoming jobs with historical deps
 - 79% of dependencies are recurring
 - Aggregate info for jobs 2+ hops downstream

Talon: Scheduling with new data representation!

Ongoing work takeaway

- Inter-job dependencies \rightarrow new opportunities!
- Dependency-aware job scheduling
 - Better, data-driven, and hands-free job valuation
 - Dependency-based utility functions
 - New dependency-aware scheduling data representation
- Questions to explore:
 - Is priority (based on historical value) good enough?
 - How expressive are utility functions?
 - Are new data representations better / necessary?

Carnegie Mellon Parallel Data Laboratory

Overview: Contributions & ongoing work

- Realizing value through user application frameworks ullet
 - 1. Elastic web services: Tributary [USENIX ATC 2018]
 - 2. General task scheduling: Stratus [ACM SoCC 2018]
 - Best student paper award
- Realizing value through dependency-aware resource management ullet
 - Dependency visualization: Owl [SIGMOD demo 2019]
 - Dependency analysis: Under submission
 - Dependency-aware scheduling: Ongoing work

Proposed thesis timeline

Time	Plan
Nov. 2019	Submission of inter-job dependency analysis paper to E
Dec. $2019 - Feb. 2020$	Design and initial implementation of Talon
	Thesis proposal preparation
Feb. 2020	Thesis proposal
Feb. – Apr. 2020	Experiment design and refinement of Talon
May – Dec. 2020	Finish experiments on Talon and paper submissions (ta
Jan. – May 2021	Dissertation writing, defense, and job search

Thank you!

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

EuroSys 2020

rgeting OSDI 2020)